Menu Close

0-1-1-6x-15x-2-20x-3-15x-4-6x-5-x-6-1-6-dx-pi-3-Or-0-1-1-kx-k-k-1-2-x-2-k-k-1-k-2-6-x-3-1-k-dx-pi-ksin-pi-k-




Question Number 135366 by Dwaipayan Shikari last updated on 12/Mar/21
∫_0 ^1 (1/( ((6x−15x^2 +20x^3 −15x^4 +6x^5 −x^6 ))^(1/6) ))dx=(π/3)  Or  ∫_0 ^1 (1/( ((kx−((k(k−1))/2)x^2 +((k(k−1)(k−2))/6)x^3 −...))^(1/k) ))dx=(π/(ksin((π/k))))
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\:\sqrt[{\mathrm{6}}]{\mathrm{6}{x}−\mathrm{15}{x}^{\mathrm{2}} +\mathrm{20}{x}^{\mathrm{3}} −\mathrm{15}{x}^{\mathrm{4}} +\mathrm{6}{x}^{\mathrm{5}} −{x}^{\mathrm{6}} }}{dx}=\frac{\pi}{\mathrm{3}} \\ $$$${Or} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\:\sqrt[{{k}}]{{kx}−\frac{{k}\left({k}−\mathrm{1}\right)}{\mathrm{2}}{x}^{\mathrm{2}} +\frac{{k}\left({k}−\mathrm{1}\right)\left({k}−\mathrm{2}\right)}{\mathrm{6}}{x}^{\mathrm{3}} −…}}{dx}=\frac{\pi}{{ksin}\left(\frac{\pi}{{k}}\right)} \\ $$
Answered by Olaf last updated on 12/Mar/21
6x−15x^2 +20x^3 −15x^4 +6x^5 −x^6   = 1−(1−x)^6   Ω = ∫_0 ^1 (dx/(^6 (√(1−(1−x)^6 ))))  Let u = (1−x)^6 , x = 1−u^(1/6)   Ω = ∫_0 ^1 (((1/6)u^(−(5/6)) )/(^6 (√(1−u)))) du = (1/6)∫_0 ^1 u^(−(5/6)) (1−u)^(−(1/6)) du  β(x,y) = ∫_0 ^1 t^(x−1) (1−t)^(y−1) dt  Ω = (1/6)β((1/6),(5/6))  β(x,y)β(x+y,1−y) = (π/(xsin(πy)))  Ω = (π/3)
$$\mathrm{6}{x}−\mathrm{15}{x}^{\mathrm{2}} +\mathrm{20}{x}^{\mathrm{3}} −\mathrm{15}{x}^{\mathrm{4}} +\mathrm{6}{x}^{\mathrm{5}} −{x}^{\mathrm{6}} \\ $$$$=\:\mathrm{1}−\left(\mathrm{1}−{x}\right)^{\mathrm{6}} \\ $$$$\Omega\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dx}}{\:^{\mathrm{6}} \sqrt{\mathrm{1}−\left(\mathrm{1}−{x}\right)^{\mathrm{6}} }} \\ $$$$\mathrm{Let}\:{u}\:=\:\left(\mathrm{1}−{x}\right)^{\mathrm{6}} ,\:{x}\:=\:\mathrm{1}−{u}^{\frac{\mathrm{1}}{\mathrm{6}}} \\ $$$$\Omega\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\frac{\mathrm{1}}{\mathrm{6}}{u}^{−\frac{\mathrm{5}}{\mathrm{6}}} }{\:^{\mathrm{6}} \sqrt{\mathrm{1}−{u}}}\:{du}\:=\:\frac{\mathrm{1}}{\mathrm{6}}\int_{\mathrm{0}} ^{\mathrm{1}} {u}^{−\frac{\mathrm{5}}{\mathrm{6}}} \left(\mathrm{1}−{u}\right)^{−\frac{\mathrm{1}}{\mathrm{6}}} {du} \\ $$$$\beta\left({x},{y}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{{x}−\mathrm{1}} \left(\mathrm{1}−{t}\right)^{{y}−\mathrm{1}} {dt} \\ $$$$\Omega\:=\:\frac{\mathrm{1}}{\mathrm{6}}\beta\left(\frac{\mathrm{1}}{\mathrm{6}},\frac{\mathrm{5}}{\mathrm{6}}\right) \\ $$$$\beta\left({x},{y}\right)\beta\left({x}+{y},\mathrm{1}−{y}\right)\:=\:\frac{\pi}{{x}\mathrm{sin}\left(\pi{y}\right)} \\ $$$$\Omega\:=\:\frac{\pi}{\mathrm{3}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *