Menu Close

0-1-1-log-x-dx-




Question Number 77790 by aliesam last updated on 10/Jan/20
∫_0 ^1 (1/( (√(−log(x))))) dx
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\:\sqrt{−{log}\left({x}\right)}}\:{dx} \\ $$
Answered by MJS last updated on 10/Jan/20
∫(dx/( (√(−ln x))))=       [t=(√(−ln x)) → dx=−2x(√(−ln x))dt]  =−2∫e^(−t^2 ) dt=−(√π)∫((2e^(−t^2 ) )/( (√π)))dt=−(√π)erf t =  =−(√π)erf (√(−ln x)) +C  ⇒ ∫_0 ^1 (dx/( (√(−ln x))))=(√π)
$$\int\frac{{dx}}{\:\sqrt{−\mathrm{ln}\:{x}}}= \\ $$$$\:\:\:\:\:\left[{t}=\sqrt{−\mathrm{ln}\:{x}}\:\rightarrow\:{dx}=−\mathrm{2}{x}\sqrt{−\mathrm{ln}\:{x}}{dt}\right] \\ $$$$=−\mathrm{2}\int\mathrm{e}^{−{t}^{\mathrm{2}} } {dt}=−\sqrt{\pi}\int\frac{\mathrm{2e}^{−{t}^{\mathrm{2}} } }{\:\sqrt{\pi}}{dt}=−\sqrt{\pi}\mathrm{erf}\:{t}\:= \\ $$$$=−\sqrt{\pi}\mathrm{erf}\:\sqrt{−\mathrm{ln}\:{x}}\:+{C} \\ $$$$\Rightarrow\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\frac{{dx}}{\:\sqrt{−\mathrm{ln}\:{x}}}=\sqrt{\pi} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *