Menu Close

0-1-1-log-x-dx-




Question Number 77790 by aliesam last updated on 10/Jan/20
∫_0 ^1 (1/( (√(−log(x))))) dx
011log(x)dx
Answered by MJS last updated on 10/Jan/20
∫(dx/( (√(−ln x))))=       [t=(√(−ln x)) → dx=−2x(√(−ln x))dt]  =−2∫e^(−t^2 ) dt=−(√π)∫((2e^(−t^2 ) )/( (√π)))dt=−(√π)erf t =  =−(√π)erf (√(−ln x)) +C  ⇒ ∫_0 ^1 (dx/( (√(−ln x))))=(√π)
dxlnx=[t=lnxdx=2xlnxdt]=2et2dt=π2et2πdt=πerft==πerflnx+C10dxlnx=π

Leave a Reply

Your email address will not be published. Required fields are marked *