Menu Close

0-1-3-3x-1-5-dx-




Question Number 65592 by Rio Michael last updated on 31/Jul/19
∫_0 ^(1/3) (3x + 1)^5 dx =
$$\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{3}}} \left(\mathrm{3}{x}\:+\:\mathrm{1}\right)^{\mathrm{5}} {dx}\:= \\ $$
Answered by mr W last updated on 31/Jul/19
∫_0 ^(1/3) (3x + 1)^5 dx   =(1/3)∫_0 ^(1/3) (3x + 1)^5 d(3x+1)  =(1/(3×6))[(3x+1)^6 ]_0 ^(1/3)   =(1/(3×6))[2^6 −1^6 ]  =((63)/(3×6))  =(7/2)
$$\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{3}}} \left(\mathrm{3}{x}\:+\:\mathrm{1}\right)^{\mathrm{5}} {dx}\: \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{3}}} \left(\mathrm{3}{x}\:+\:\mathrm{1}\right)^{\mathrm{5}} {d}\left(\mathrm{3}{x}+\mathrm{1}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}×\mathrm{6}}\left[\left(\mathrm{3}{x}+\mathrm{1}\right)^{\mathrm{6}} \right]_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{3}}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}×\mathrm{6}}\left[\mathrm{2}^{\mathrm{6}} −\mathrm{1}^{\mathrm{6}} \right] \\ $$$$=\frac{\mathrm{63}}{\mathrm{3}×\mathrm{6}} \\ $$$$=\frac{\mathrm{7}}{\mathrm{2}} \\ $$