Menu Close

0-1-ln-1-x-x-2-x-dx-0-1-ln-1-x-3-ln-1-x-x-dx-pi-2-6-0-1-x-3n-1-n-dx-n-1-1-3n-2-pi-2-18-pi-2-9-




Question Number 139224 by mnjuly1970 last updated on 24/Apr/21
       𝛗=∫_0 ^( 1) ((ln(1+x+x^2 ))/x)dx     φ=∫_0 ^( 1) ((ln(1−x^3 )−ln(1−x))/x)dx      =Ω+(π^2 /6)      Ω=−Σ∫_0 ^( 1) (x^(3n−1) /n)dx=−Σ_(n=1 ) ^∞ (1/(3n^2 ))         =((−π^2 )/(18)) .....≽ 𝛗=(π^2 /9)         .......(π^2 /9)−(π^2 /(24)) =((5π^2 )/(72))
ϕ=01ln(1+x+x2)xdxϕ=01ln(1x3)ln(1x)xdx=Ω+π26Ω=Σ01x3n1ndx=n=113n2=π218..ϕ=π29.π29π224=5π272
Commented by qaz last updated on 24/Apr/21
Great,Sir,i will complete that integral.
Great,Sir,iwillcompletethatintegral.
Commented by mnjuly1970 last updated on 24/Apr/21
   i appologize .thank you master...
iappologize.thankyoumaster
Answered by phanphuoc last updated on 24/Apr/21
π^2 /24 ???
π2/24???
Answered by mathmax by abdo last updated on 25/Apr/21
Φ=∫_0 ^1  ((log(x^2 +x+1))/x)dx ⇒Φ=∫_0 ^1  ((log(1−x^3 )−log(1−x))/x)dx  =∫_0 ^1  ((log(1−x^3 ))/x)dx−∫_0 ^1  ((log(1−x))/x)dx  we have log^′ (1−x)=−(1/(1−x))=−Σ_(n=0) ^∞ x^n  ⇒log(1−x)=−Σ_(n=0) ^∞  (x^(n+1) /(n+1))  =−Σ_(n=1) ^∞  (x^n /n) ⇒((log(1−x))/x) =−Σ_(n=1) ^∞  (x^(n−1) /n) ⇒  ∫_0 ^1  ((log(1−x))/x)dx =−Σ_(n=1) ^∞  (1/n)∫_0 ^1  x^(n−1)  dx =−Σ_(n=1) ^∞  (1/n^2 )=−(π^2 /6)  also log(1−x^3 ) =−Σ_(n=1) ^∞  (x^(3n) /n) ⇒((log(1−x^3 ))/x)=−Σ_(n=1) ^∞  (x^(3n−1) /n)  ⇒∫_0 ^1  ((log(1−x^3 ))/x)dx =−Σ_(n=1) ^∞  (1/n)×(1/(3n)) =−(1/3)Σ_(n=1) ^∞  (1/n^2 )=−(1/3)×(π^2 /6)  =−(π^2 /(18)) ⇒Φ =−(π^2 /(18))+(π^2 /6) =−(π^2 /(18))+((3π^2 )/(18)) =((2π^2 )/(18)) =(π^2 /9)
Φ=01log(x2+x+1)xdxΦ=01log(1x3)log(1x)xdx=01log(1x3)xdx01log(1x)xdxwehavelog(1x)=11x=n=0xnlog(1x)=n=0xn+1n+1=n=1xnnlog(1x)x=n=1xn1n01log(1x)xdx=n=11n01xn1dx=n=11n2=π26alsolog(1x3)=n=1x3nnlog(1x3)x=n=1x3n1n01log(1x3)xdx=n=11n×13n=13n=11n2=13×π26=π218Φ=π218+π26=π218+3π218=2π218=π29

Leave a Reply

Your email address will not be published. Required fields are marked *