Menu Close

0-1-log-1-x-x-2-x-3-x-4-1-1-x-1-x-2-1-x-3-1-x-4-dx-




Question Number 77570 by TawaTawa last updated on 08/Jan/20
∫_( 0) ^( 1)   log(((1 + x +  x^2  + x^3  + x^4 )/( (√(1 + (1/x) + (1/x^2 ) + (1/x^3 ) + (1/x^4 )))))) dx
01log(1+x+x2+x3+x41+1x+1x2+1x3+1x4)dx
Answered by MJS last updated on 08/Jan/20
=∫_0 ^1 ln (x^2 (√(x^4 +x^3 +x^2 +x+1))) dx=  =2∫_0 ^1 ln x dx+(1/2)∫_0 ^1 ln (x^4 +x^3 +x^2 +x+1) dx         2∫_0 ^1 ln x dx=2[x(ln x −1)]_0 ^1 =            [lim_(x→0)  x(ln x −1) =0]       =−2         (1/2)∫_0 ^1 ln (x^4 +x^3 +x^2 +x+1) dx=            [α_j =e^(i((2πj)/5)) ; j=1, 2, 3, 4]       =(1/2)∫_0 ^1 ln (Π_(j=1) ^4 (x−α_j )) dx=       =(1/2)Σ_(j=1) ^4 (∫_0 ^1 ln (x−α_j ) dx)=       =(1/2)[Σ_(j=1) ^4 ((x−α_j )ln (x−α_j ))−2x]_0 ^1 =...       ...=((√5)/4)ln ((1+(√5))/2) +(5/8)ln 5 +((√(25+10(√5)))/(20))π−2    ⇒  answer is ((√5)/4)ln ((1+(√5))/2) +(5/8)ln 5 +((√(25+10(√5)))/(20))π−4
=10ln(x2x4+x3+x2+x+1)dx==210lnxdx+1210ln(x4+x3+x2+x+1)dx210lnxdx=2[x(lnx1)]01=[limx0x(lnx1)=0]=21210ln(x4+x3+x2+x+1)dx=[αj=ei2πj5;j=1,2,3,4]=1210ln(4j=1(xαj))dx==124j=1(10ln(xαj)dx)==12[4j=1((xαj)ln(xαj))2x]01==54ln1+52+58ln5+25+10520π2answeris54ln1+52+58ln5+25+10520π4
Commented by TawaTawa last updated on 08/Jan/20
God bless you sir.
Godblessyousir.
Commented by TawaTawa last updated on 12/Jan/20
Please sir. How did you get:    e^(i((2πj)/5) ) ;       j  =  1, 2, 3, 4
Pleasesir.Howdidyouget:ei2πj5;j=1,2,3,4
Commented by MJS last updated on 12/Jan/20
(x^4 +x^3 +x^2 +x+1)(x−1)=x^5 −1  ⇒ the roots are the 5^(th)  roots of unity  =e^(i((2πj)/5))  with j=0, 1, 2, 3, 4 but j=0 ⇔ x−1=0
(x4+x3+x2+x+1)(x1)=x51therootsarethe5throotsofunity=ei2πj5withj=0,1,2,3,4butj=0x1=0

Leave a Reply

Your email address will not be published. Required fields are marked *