0-1-log-2-x-dx- Tinku Tara June 3, 2023 Operation Research 0 Comments FacebookTweetPin Question Number 135127 by Dwaipayan Shikari last updated on 10/Mar/21 ∫01log2(Γ(x))dx Answered by mathmax by abdo last updated on 11/Mar/21 wehaveΓ(x).Γ(1−x)=πsin(πx)⇒log(Γ(x))+log(Γ(1−x))=log(π)−log(sin(πx))⇒log(Γ(x))2+2log(Γ(x))log(Γ(1−x))+log2(Γ(1−x))=log2(π)−2logπlog(sin(πx))+log2(sin(πx))⇒∫01log2(Γ(x))dx+∫01log2(Γ(1−x))dx+2∫01log(Γ(x))log(Γ(1−x))dx=log2(π)−2logπ∫01log(sin(πx))dx+∫01log2(sin(πx))dx∫01log2(Γ(1−x))dx=1−x=t∫01log2(Γ(t))dt∫01log(sin(πx))dx=πx=t1π∫0πlog(sint)dt=1π∫0π2log(sint)dt+1π∫π2πlog(sint)dt(→t=π2+u)=1π(−π2log2)+1π(−π2log2)=−log(2)⇒2∫01log2(Γ(x))dx+2∫01log(Γ(x)).log(Γ(1−x))dx=log2π+2logπlog2+∫01log2(sin(πx))dx…becontinued… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: x-3-px-ry-qz-a-0-y-3-rx-qy-pz-b-0-z-3-qx-py-rz-c-0-solve-for-x-y-z-in-terms-of-p-q-r-a-b-c-Next Next post: Question-135128 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.