Menu Close

0-1-log-2-x-dx-




Question Number 135127 by Dwaipayan Shikari last updated on 10/Mar/21
∫_0 ^1 log^2 (Γ(x))dx
01log2(Γ(x))dx
Answered by mathmax by abdo last updated on 11/Mar/21
we have Γ(x).Γ(1−x)=(π/(sin(πx))) ⇒  log(Γ(x))+log(Γ(1−x))=log(π)−log(sin(πx)) ⇒  log(Γ(x))^2  +2log(Γ(x))log(Γ(1−x))+log^2 (Γ(1−x))  =log^2 (π)−2logπ log(sin(πx))+log^2 (sin(πx)) ⇒  ∫_0 ^1 log^2 (Γ(x))dx+∫_0 ^1 log^2 (Γ(1−x))dx+2∫_0 ^1 log(Γ(x))log(Γ(1−x))dx  =log^2 (π)−2logπ ∫_0 ^1 log(sin(πx))dx+∫_0 ^1  log^2 (sin(πx))dx  ∫_0 ^1 log^2 (Γ(1−x))dx =_(1−x=t)    ∫_0 ^1 log^2 (Γ(t))dt  ∫_0 ^1  log(sin(πx))dx =_(πx=t)  (1/π) ∫_0 ^π log(sint)dt  =(1/π)∫_0 ^(π/2) log(sint)dt +(1/π)∫_(π/2) ^π log(sint)dt (→t=(π/2)+u)  =(1/π)(−(π/2)log2)+(1/π)(−(π/2)log2) =−log(2)  ⇒2∫_0 ^1  log^2 (Γ(x))dx+2∫_0 ^1 log(Γ(x)).log(Γ(1−x))dx  =log^2 π+2logπlog2 +∫_0 ^1  log^2 (sin(πx))dx  ...be continued...
wehaveΓ(x).Γ(1x)=πsin(πx)log(Γ(x))+log(Γ(1x))=log(π)log(sin(πx))log(Γ(x))2+2log(Γ(x))log(Γ(1x))+log2(Γ(1x))=log2(π)2logπlog(sin(πx))+log2(sin(πx))01log2(Γ(x))dx+01log2(Γ(1x))dx+201log(Γ(x))log(Γ(1x))dx=log2(π)2logπ01log(sin(πx))dx+01log2(sin(πx))dx01log2(Γ(1x))dx=1x=t01log2(Γ(t))dt01log(sin(πx))dx=πx=t1π0πlog(sint)dt=1π0π2log(sint)dt+1ππ2πlog(sint)dt(t=π2+u)=1π(π2log2)+1π(π2log2)=log(2)201log2(Γ(x))dx+201log(Γ(x)).log(Γ(1x))dx=log2π+2logπlog2+01log2(sin(πx))dxbecontinued

Leave a Reply

Your email address will not be published. Required fields are marked *