Menu Close

0-1-log-e-x-1-x-x-2-1-dx-




Question Number 132191 by rs4089 last updated on 12/Feb/21
∫_0 ^1 ((log_e (x+1))/(x(x^2 +1)))dx
01loge(x+1)x(x2+1)dx
Answered by mathmax by abdo last updated on 12/Feb/21
at form of serie  I=∫_0 ^1  ((ln(x+1))/(x(x^2  +1)))dx ⇒I =∫_0 ^1 ((ln(1+x))/x)Σ_(n=0) ^∞  (−1)^n x^(2n)  dx  also ln^′ (1+x)=(1/(1+x))=Σ_(n=0) ^∞ (−1)^n x^n  ⇒ln(1+x)=Σ_(n=0) ^∞ (−1)^n  (x^(n+1) /(n+1))  =Σ_(n=1) ^∞  (((−1)^(n−1) )/n)x^n  ⇒((ln(1+x))/x).(1/(1+x^2 ))=(Σ_(n=1) ^∞  (((−1)^(n−1) )/n)x^(n−1) )(Σ_(n=0) ^∞ (−1)^n x^(2n) )  =(Σ_(n=0) ^∞  (((−1)^n )/(n+1))x^n ).(Σ_(n=0) ^∞  (−1)^n  x^(2n) )=(Σa_n ).(Σb_n )  =Σ c_n   with c_n =Σ_(i+j=n)  a_i b_j   =Σ_(i+j=n)    (((−1)^i )/(i+1))x^i  (−1)^j  x^(2j)   =Σ_(i=0) ^n  (((−1)^i )/(i+1))x^i (−1)^(n−i) x^(2(n−i))  ⇒  I =∫_0 ^1 Σ_(n=0) ^∞  c_n dx =∫_0 ^1  Σ_(n=0) ^∞ (Σ_(i=0) ^n  (((−1)^n )/(i+1)) x^(2n−i) )dx  =Σ_(n=0) ^∞  (−1)^n (Σ_(i=0) ^n  (1/(i+1))∫_0 ^1  x^(2n−i)  dx)  =Σ_(n=0) ^∞  (−1)^n (Σ_(i=0) ^n  (1/((i+1)(2n−i+1))))
atformofserieI=01ln(x+1)x(x2+1)dxI=01ln(1+x)xn=0(1)nx2ndxalsoln(1+x)=11+x=n=0(1)nxnln(1+x)=n=0(1)nxn+1n+1=n=1(1)n1nxnln(1+x)x.11+x2=(n=1(1)n1nxn1)(n=0(1)nx2n)=(n=0(1)nn+1xn).(n=0(1)nx2n)=(Σan).(Σbn)=Σcnwithcn=i+j=naibj=i+j=n(1)ii+1xi(1)jx2j=i=0n(1)ii+1xi(1)nix2(ni)I=01n=0cndx=01n=0(i=0n(1)ni+1x2ni)dx=n=0(1)n(i=0n1i+101x2nidx)=n=0(1)n(i=0n1(i+1)(2ni+1))
Answered by mathmax by abdo last updated on 12/Feb/21
let try parametric method Φ=∫_0 ^1  ((ln(1+x))/(x(x^2 +1)))dx let  f(a)=∫_0 ^1  ((ln(1+ax))/(x(x^2  +1)))  with a>0 ⇒f^′ (a)=∫_0 ^1 (x/((1+ax)x(x^2  +1)))dx  =∫_0 ^1  (dx/((1+ax)(x^2  +1)))  let decompose F(x)=(1/((ax+1)(x^2  +1)))  F(x)=(α/(ax+1)) +((mx+n)/(x^2  +1))  α=(1/(((1/a^2 )+1)))=(a^2 /(1+a^2 )) ,lim_(x→+∞) xF(x)=0 =(α/a) +m ⇒m=−(α/a)=−(a/(1+a^2 ))  F(0)=1 =α +n ⇒n=1−α =1−(a^2 /(1+a^2 ))=(1/(1+a^2 )) ⇒  F(x)=(a^2 /((1+a^2 )(ax+1))) +((−(a/(1+a^2 ))x+(1/(1+a^2 )))/(x^2  +1))  ⇒∫_0 ^1  F(x)dx =(a^2 /(1+a^2 ))∫_0 ^1  (dx/(ax+1))−(1/(1+a^2 ))∫_0 ^1  ((ax−1)/(x^2  +1))dx  =(a/(1+a^2 ))[ln(ax+1)]_0 ^1  −(a/(2(1+a^2 )))[ln(1+x^2 )]_0 ^1 +(1/(1+a^2 )).(π/4)  =(a/(1+a^2 ))ln(a+1)−((aln(2))/(2(1+a^2 )))+(π/(4(1+a^2 ))) ⇒  f(a) =∫  ((aln(a+1))/(1+a^2 ))da −((ln(2))/2)∫  ((ada)/(1+a^2 )) +(π/4) arctana +c  =∫  ((aln(1+a))/(1+a^2 ))da−((ln(2))/4)ln(1+a^2 )+(π/4) arctan(a)+C  ∫  (a/(a^2  +1))ln(1+a)da =(1/2)ln(a^2 +1)ln(1+a)−∫ (1/2)ln(a^2  +1)(da/(1+a))  =(1/2)ln(1+a)ln(1+a^2 )−(1/2)∫ ((ln(1+a^2 ))/(1+a))da  ⇒  f(a)=∫_0 ^a  ((xln(1+x))/(1+x^2 ))dx−((ln(2))/4)ln(1+a^2 )+(π/4) arctan(a) +C  C=f(0)=0  f(1)=∫_0 ^1   ((xln(1+x))/(1+x^2 ))dx−((ln^2 (2))/4) +(π^2 /(16)) =Φ  we have by parts  ∫_0 ^1  ((xln(1+x))/(1+x^2 ))dx=[(1/2)ln(1+x)ln(1+x^2 )]_0 ^1   −(1/2)∫_0 ^1  ((ln(1+x^2 ))/(1+x))dx =(1/2)ln^2 (2)−(1/2)∫_0 ^1  ((ln(1+x^2 ))/(1+x))dx  ∫_0 ^1  ((ln(1+x^2 ))/(1+x))dx =∫_0 ^1 ln(1+x^2 )Σ_(n=0) ^∞ (−1)^n  x^n  dx  =Σ_(n=0) ^∞  (−1)^n  ∫_0 ^1  x^n ln(1+x^2 )dx =Σ_(n=0) ^∞ (−1)^n u_n   u_n =∫_0 ^1  x^n ln(1+x^2 )dx  =[(x^(n+1) /(n+1))ln(1+x^2 )]_0 ^1 −∫_0 ^1  (x^(n+1) /(n+1))×((2x)/(1+x^2 ))dx  =((ln(2))/(n+1))−(2/(n+1))∫_0 ^1  (x^(n+2) /(1+x^2 )) dx .....be continued...
lettryparametricmethodΦ=01ln(1+x)x(x2+1)dxletf(a)=01ln(1+ax)x(x2+1)witha>0f(a)=01x(1+ax)x(x2+1)dx=01dx(1+ax)(x2+1)letdecomposeF(x)=1(ax+1)(x2+1)F(x)=αax+1+mx+nx2+1α=1(1a2+1)=a21+a2,limx+xF(x)=0=αa+mm=αa=a1+a2F(0)=1=α+nn=1α=1a21+a2=11+a2F(x)=a2(1+a2)(ax+1)+a1+a2x+11+a2x2+101F(x)dx=a21+a201dxax+111+a201ax1x2+1dx=a1+a2[ln(ax+1)]01a2(1+a2)[ln(1+x2)]01+11+a2.π4=a1+a2ln(a+1)aln(2)2(1+a2)+π4(1+a2)f(a)=aln(a+1)1+a2daln(2)2ada1+a2+π4arctana+c=aln(1+a)1+a2daln(2)4ln(1+a2)+π4arctan(a)+Caa2+1ln(1+a)da=12ln(a2+1)ln(1+a)12ln(a2+1)da1+a=12ln(1+a)ln(1+a2)12ln(1+a2)1+adaf(a)=0axln(1+x)1+x2dxln(2)4ln(1+a2)+π4arctan(a)+CC=f(0)=0f(1)=01xln(1+x)1+x2dxln2(2)4+π216=Φwehavebyparts01xln(1+x)1+x2dx=[12ln(1+x)ln(1+x2)]011201ln(1+x2)1+xdx=12ln2(2)1201ln(1+x2)1+xdx01ln(1+x2)1+xdx=01ln(1+x2)n=0(1)nxndx=n=0(1)n01xnln(1+x2)dx=n=0(1)nunun=01xnln(1+x2)dx=[xn+1n+1ln(1+x2)]0101xn+1n+1×2x1+x2dx=ln(2)n+12n+101xn+21+x2dx..becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *