Menu Close

0-1-log-x-log-x-1-x-x-1-x-dx-Any-help-




Question Number 142690 by Rankut last updated on 04/Jun/21
∫_(0 ) ^1 ((log(x)log((x/(1−x))))/( (√(x/(1−x)))))dx  Any help
$$\int_{\mathrm{0}\:} ^{\mathrm{1}} \frac{\boldsymbol{{log}}\left(\boldsymbol{{x}}\right)\boldsymbol{{log}}\left(\frac{\boldsymbol{{x}}}{\mathrm{1}−\boldsymbol{{x}}}\right)}{\:\sqrt{\frac{\boldsymbol{{x}}}{\mathrm{1}−\boldsymbol{{x}}}}}\boldsymbol{{dx}} \\ $$$$\boldsymbol{\mathrm{Any}}\:\boldsymbol{\mathrm{help}}\: \\ $$$$ \\ $$
Answered by Dwaipayan Shikari last updated on 04/Jun/21
∫_0 ^1 x^(a−1) ((x/(1−x)))^(b−1) dx=∫_0 ^1 x^(a+b−2) (1−x)^(1−b) dx=((Γ(a+b−1)Γ(2−b))/(Γ(a+1)))  Here a=1     ∫_0 ^1 log(x)x^(a−1) ((x/(1−x)))^(b−1) dx=(∂/∂a).((Γ(a+b−1))/(Γ(a+1)))Γ(2−b)  =((Γ(a+1)Γ′(a+b−1)−Γ′(a+1)Γ(a+b−1))/(Γ^2 (a+1)))Γ(2−b)  =Γ′(b)Γ(2−b)−ψ(2)Γ(b)Γ(2−b)  ∫_0 ^1 log(x)log((x/(1−x)))((x/(1−x)))^(b−1) dx  =Γ′′(b)Γ(2−b)−Γ′(2−b)Γ′(b)−ψ(2)Γ′(b)Γ(2−b)+ψ′(2)Γ′(2−b)Γ(b)  Here  put b=(1/(2 ))
$$\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{a}−\mathrm{1}} \left(\frac{{x}}{\mathrm{1}−{x}}\right)^{{b}−\mathrm{1}} {dx}=\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{a}+{b}−\mathrm{2}} \left(\mathrm{1}−{x}\right)^{\mathrm{1}−{b}} {dx}=\frac{\Gamma\left({a}+{b}−\mathrm{1}\right)\Gamma\left(\mathrm{2}−{b}\right)}{\Gamma\left({a}+\mathrm{1}\right)} \\ $$$${Here}\:{a}=\mathrm{1}\:\:\: \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {log}\left({x}\right){x}^{{a}−\mathrm{1}} \left(\frac{{x}}{\mathrm{1}−{x}}\right)^{{b}−\mathrm{1}} {dx}=\frac{\partial}{\partial{a}}.\frac{\Gamma\left({a}+{b}−\mathrm{1}\right)}{\Gamma\left({a}+\mathrm{1}\right)}\Gamma\left(\mathrm{2}−{b}\right) \\ $$$$=\frac{\Gamma\left({a}+\mathrm{1}\right)\Gamma'\left({a}+{b}−\mathrm{1}\right)−\Gamma'\left({a}+\mathrm{1}\right)\Gamma\left({a}+{b}−\mathrm{1}\right)}{\Gamma^{\mathrm{2}} \left({a}+\mathrm{1}\right)}\Gamma\left(\mathrm{2}−{b}\right) \\ $$$$=\Gamma'\left({b}\right)\Gamma\left(\mathrm{2}−{b}\right)−\psi\left(\mathrm{2}\right)\Gamma\left({b}\right)\Gamma\left(\mathrm{2}−{b}\right) \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {log}\left({x}\right){log}\left(\frac{{x}}{\mathrm{1}−{x}}\right)\left(\frac{{x}}{\mathrm{1}−{x}}\right)^{{b}−\mathrm{1}} {dx} \\ $$$$=\Gamma''\left({b}\right)\Gamma\left(\mathrm{2}−{b}\right)−\Gamma'\left(\mathrm{2}−{b}\right)\Gamma'\left({b}\right)−\psi\left(\mathrm{2}\right)\Gamma'\left({b}\right)\Gamma\left(\mathrm{2}−{b}\right)+\psi'\left(\mathrm{2}\right)\Gamma'\left(\mathrm{2}−{b}\right)\Gamma\left({b}\right) \\ $$$${Here} \\ $$$${put}\:{b}=\frac{\mathrm{1}}{\mathrm{2}\:} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *