Menu Close

0-1-log-x-log-x-1-x-x-1-x-dx-Any-help-




Question Number 142690 by Rankut last updated on 04/Jun/21
∫_(0 ) ^1 ((log(x)log((x/(1−x))))/( (√(x/(1−x)))))dx  Any help
01log(x)log(x1x)x1xdxAnyhelp
Answered by Dwaipayan Shikari last updated on 04/Jun/21
∫_0 ^1 x^(a−1) ((x/(1−x)))^(b−1) dx=∫_0 ^1 x^(a+b−2) (1−x)^(1−b) dx=((Γ(a+b−1)Γ(2−b))/(Γ(a+1)))  Here a=1     ∫_0 ^1 log(x)x^(a−1) ((x/(1−x)))^(b−1) dx=(∂/∂a).((Γ(a+b−1))/(Γ(a+1)))Γ(2−b)  =((Γ(a+1)Γ′(a+b−1)−Γ′(a+1)Γ(a+b−1))/(Γ^2 (a+1)))Γ(2−b)  =Γ′(b)Γ(2−b)−ψ(2)Γ(b)Γ(2−b)  ∫_0 ^1 log(x)log((x/(1−x)))((x/(1−x)))^(b−1) dx  =Γ′′(b)Γ(2−b)−Γ′(2−b)Γ′(b)−ψ(2)Γ′(b)Γ(2−b)+ψ′(2)Γ′(2−b)Γ(b)  Here  put b=(1/(2 ))
01xa1(x1x)b1dx=01xa+b2(1x)1bdx=Γ(a+b1)Γ(2b)Γ(a+1)Herea=101log(x)xa1(x1x)b1dx=a.Γ(a+b1)Γ(a+1)Γ(2b)=Γ(a+1)Γ(a+b1)Γ(a+1)Γ(a+b1)Γ2(a+1)Γ(2b)=Γ(b)Γ(2b)ψ(2)Γ(b)Γ(2b)01log(x)log(x1x)(x1x)b1dx=Γ(b)Γ(2b)Γ(2b)Γ(b)ψ(2)Γ(b)Γ(2b)+ψ(2)Γ(2b)Γ(b)Hereputb=12

Leave a Reply

Your email address will not be published. Required fields are marked *