Menu Close

0-1-r-1-n-x-r-k-1-n-1-x-k-dx-




Question Number 65681 by aliesam last updated on 01/Aug/19
∫_0 ^1 (Π_(r=1) ^n (x+r))(Σ_(k=1) ^n  (1/(x+k))) dx
01(nr=1(x+r))(nk=11x+k)dx
Answered by Tanmay chaudhury last updated on 02/Aug/19
∫_0 ^1 (x+1)(x+2)(x+3)...(x+n)×((1/(x+1))+(1/(x+2))+(1/(x+3))+...+(1/(x+n)))dx  y=(x+1)(x+2)(x+3)...(x+n)  lny=ln(x+1)+ln(x+2)+ln(x+3)+..+ln(x+n)  (1/y)×(dy/dx)=(1/(x+1))+(1/(x+2))+(1/(x+3))+..+(1/(x+n))  (dy/dx)=(x+1)(x+2)(x+3)...(x+n)×((1/(x+1))+(1/(x+2))+..+(1/(x+n)))  dy=[Π_(r=1) ^n (x+r)×Σ_(n=1) ^n (1/(x+r))]dx  ∫_0 ^1 Π(x+r)×Σ_(k=1) ^n (1/(x+k))dx  =∫_0 ^1 d(x+1)(x+2)..(x+n)  ∣(x+1)(x+2)(x+3)..(x+n)∣_0 ^1   =(2)(3)(4)...(1+n)−(1×2×3..×n)  =(n+1)!−n!  =(n+1)!−n!  =(n+1)n!−n!  =(n+1−1)×n!  =n×n!
01(x+1)(x+2)(x+3)(x+n)×(1x+1+1x+2+1x+3++1x+n)dxy=(x+1)(x+2)(x+3)(x+n)lny=ln(x+1)+ln(x+2)+ln(x+3)+..+ln(x+n)1y×dydx=1x+1+1x+2+1x+3+..+1x+ndydx=(x+1)(x+2)(x+3)(x+n)×(1x+1+1x+2+..+1x+n)dy=[nr=1(x+r)×nn=11x+r]dx01Π(x+r)×nk=11x+kdx=01d(x+1)(x+2)..(x+n)(x+1)(x+2)(x+3)..(x+n)01=(2)(3)(4)(1+n)(1×2×3..×n)=(n+1)!n!=(n+1)!n!=(n+1)n!n!=(n+11)×n!=n×n!