Menu Close

0-2-sinx-sinx-cosx-dx-




Question Number 7300 by Tawakalitu. last updated on 22/Aug/16
∫_0 ^(Π/2)    ((sinx)/(sinx + cosx)) dx
0Π2sinxsinx+cosxdx
Answered by Yozzia last updated on 22/Aug/16
I=∫_0 ^(π/2) ((sinx)/(sinx+cosx))dx  Q=∫_0 ^(π/2) ((cosx)/(sinx+cosx))dx  I+Q=∫_0 ^(π/2) ((sinx+cosx)/(sinx+cosx))dx=∫_0 ^(π/2) dx=(π/2)  Q−I=∫_0 ^(π/2) ((cosx−sinx)/(sinx+cosx))dx=∫_1 ^1 (1/u)du=0  ⇒I=Q ∴ 2I=(π/2)⇒I=(π/4).
I=0π/2sinxsinx+cosxdxQ=0π/2cosxsinx+cosxdxI+Q=0π/2sinx+cosxsinx+cosxdx=0π/2dx=π2QI=0π/2cosxsinxsinx+cosxdx=111udu=0I=Q2I=π2I=π4.
Commented by Yozzia last updated on 22/Aug/16
I(m)=∫_0 ^(π/2) ((sin^m x)/(cos^m x+sin^m x))dx   m∈R.  ∵ ∫_0 ^a f(x)dx=∫_0 ^a f(a−x)dx  ⇒I(m)=∫_0 ^(π/2) ((sin^m ((π/2)−x))/(cos^m ((π/2)−x)+sin^m ((π/2)−x)))dx  Since sin(0.5π−x)=cosx and cos(0.5π−x)=sinx  ⇒I(m)=∫_0 ^(π/2) ((cos^m x)/(sin^m x+cos^m x))dx.  ∴ 2I(m)=∫_0 ^(π/2) ((sin^m x+cos^m x)/(sin^m x+cos^m x))dx=(π/2)  ⇒I(m)=(π/4) or ∫_0 ^(π/2) ((sin^m x)/(cos^m x+sin^m x))dx=(π/4).
I(m)=0π/2sinmxcosmx+sinmxdxmR.0af(x)dx=0af(ax)dxI(m)=0π/2sinm(π2x)cosm(π2x)+sinm(π2x)dxSincesin(0.5πx)=cosxandcos(0.5πx)=sinxI(m)=0π/2cosmxsinmx+cosmxdx.2I(m)=0π/2sinmx+cosmxsinmx+cosmxdx=π2I(m)=π4or0π/2sinmxcosmx+sinmxdx=π4.
Commented by Tawakalitu. last updated on 22/Aug/16
Wow, thanks so much. i really appreciate
Wow,thankssomuch.ireallyappreciate

Leave a Reply

Your email address will not be published. Required fields are marked *