Question Number 137448 by liberty last updated on 03/Apr/21
$$\int_{\mathrm{0}} ^{\:\mathrm{3}/\mathrm{4}} \frac{{dx}}{\left({x}+\mathrm{1}\right)\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}}\:? \\ $$
Answered by MJS_new last updated on 03/Apr/21
$$\int\frac{{dx}}{\left({x}+\mathrm{1}\right)\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}}= \\ $$$$\:\:\:\:\:\left[{t}={x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}\:\Leftrightarrow\:{x}=\frac{{t}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}{t}}\:\rightarrow\:{dx}=\frac{\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}}{{x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}}{dt}\right] \\ $$$$=\mathrm{2}\int\frac{{dt}}{{t}^{\mathrm{2}} +\mathrm{2}{t}−\mathrm{1}}=−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{ln}\:\frac{{t}+\mathrm{1}+\sqrt{\mathrm{2}}}{{t}+\mathrm{1}−\sqrt{\mathrm{2}}}\:= \\ $$$$=−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{ln}\:\frac{−{x}+\mathrm{1}+\sqrt{\mathrm{2}\left({x}^{\mathrm{2}} +\mathrm{1}\right)}}{{x}+\mathrm{1}} \\ $$$$\Rightarrow\:\mathrm{answer}\:\mathrm{is}\:\left(\mathrm{ln}\:\left(\mathrm{1}+\mathrm{2}\sqrt{\mathrm{2}}\right)\:−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\mathrm{7}\right)\sqrt{\mathrm{2}} \\ $$
Commented by liberty last updated on 03/Apr/21
Commented by liberty last updated on 03/Apr/21
$${but}\:{i}\:{got}\:{in}\:{trigonometry} \\ $$
Answered by EDWIN88 last updated on 03/Apr/21
$$\mathrm{E}=\:\int_{\mathrm{0}} ^{\:\mathrm{3}/\mathrm{4}} \:\frac{\mathrm{dx}}{\left(\mathrm{x}+\mathrm{1}\right)\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}} \\ $$$$\mathrm{let}\:\mathrm{x}\:=\:\mathrm{tan}\:\mathrm{t}\:\Rightarrow\mathrm{dx}\:=\:\mathrm{sec}^{\mathrm{2}} \:\mathrm{t}\:\mathrm{dt}\: \\ $$$$\mathrm{E}=\int^{\:} \:\frac{\mathrm{sec}\:^{\mathrm{2}} \mathrm{t}\:}{\left(\mathrm{tan}\:\mathrm{t}\:+\mathrm{1}\right)\sqrt{\mathrm{1}+\mathrm{tan}\:^{\mathrm{2}} \mathrm{t}}}\:\mathrm{dt} \\ $$$$\mathrm{E}=\:\int\:\frac{\mathrm{dt}}{\:\sqrt{\mathrm{2}}\:\mathrm{sec}\:\left(\mathrm{t}−\frac{\pi}{\mathrm{4}}\right)}\:=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\mathrm{ln}\:\mid\mathrm{sec}\:\left(\mathrm{t}−\frac{\pi}{\mathrm{4}}\right)+\mathrm{tan}\:\left(\mathrm{t}−\frac{\pi}{\mathrm{4}}\right)\mid+\mathrm{C} \\ $$$$=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\mathrm{ln}\:\mid\:\frac{\sqrt{\mathrm{2}}\:\mathrm{sec}\:\mathrm{t}+\mathrm{tan}\:\mathrm{t}−\mathrm{1}}{\mathrm{1}+\mathrm{tan}\:\mathrm{t}}\mid\:+\:\mathrm{C} \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\mathrm{ln}\:\mid\frac{\sqrt{\mathrm{2}+\mathrm{2x}^{\mathrm{2}} }\:+\mathrm{x}−\mathrm{1}}{\mathrm{1}+\mathrm{x}}\:\mid\:+\:\mathrm{C} \\ $$$$\mathrm{Now}\:\int_{\mathrm{0}} ^{\:\mathrm{3}/\mathrm{4}} \:\frac{{dx}}{\left({x}+\mathrm{1}\right)\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\: \\ $$$$=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\left[\:\mathrm{ln}\:\left(\mathrm{2}\sqrt{\mathrm{14}}\:−\mathrm{1}\right)−\mathrm{ln}\:\left(\mathrm{7}\right)−\mathrm{ln}\:\left(\sqrt{\mathrm{2}}\:−\mathrm{1}\right)\:\right] \\ $$$$\approx\:\mathrm{0}.\mathrm{569006} \\ $$