Menu Close

0-5-log-10-x-2-55x-90-log-10-x-36-log-10-2-Find-the-value-s-of-x-and-determine-the-domain-of-x-




Question Number 4457 by love math last updated on 29/Jan/16
0.5 (log_(10) (x^2 −55x+90) − log_(10) (x−36))= log_(10) (√2)  Find the value(s) of x and determine the domain of x.
0.5(log10(x255x+90)log10(x36))=log102Findthevalue(s)ofxanddeterminethedomainofx.
Commented by Yozzii last updated on 29/Jan/16
The domain of this equation is equivalent  to the set of values of x satisfying  the equation. Mr. Soomro has given  this to be {3,54}.
Thedomainofthisequationisequivalenttothesetofvaluesofxsatisfyingtheequation.Mr.Soomrohasgiventhistobe{3,54}.
Answered by Rasheed Soomro last updated on 29/Jan/16
0.5 (log_(10) (x^2 −55x+90) − log_(10) (x−36))= log_(10) (√2)  log_(10) (x^2 −55x+90)^(1/2)  − log_(10) (x−36)^(1/2) = log_(10) 2^(1/2)   log_(10) (((x^2 −55x+90)/(x−36)))^(1/2) =log_(10) 2^(1/2)   (((x^2 −55x+90)/(x−36)))^(1/2) =2^(1/2)   ((x^2 −55x+90)/(x−36))=2  x^2 −55x+90−2x+72=0  x^2 −57x+162=0  x^2 −54x−3x+162=0  x(x−54)−3(x−54)=0  (x−54)(x−3)=0  x=3 ∣ x=54    If f(x)=0.5 (log_(10) (x^2 −55x+90) − log_(10) (x−36))− log_(10) (√2)  For real f(x)                        x^2 −55x+90>0  ∧ x−36>0  x−36>0 ⇒ x>36........................................(i)  Equation x^2 −55x+90=0 has two solutions  x=((55+(√(2665)))/2),((55+(√(2665)))/2)  So inequality  x^2 −55x+90>0 has solutions:  x>((55+(√(2665)))/2)≈53.31  ,x>((55−(√(2665)))/2) ≈1.69 .......(ii)  Domain is intersection of  (i) & (ii)                        {x : x∈R ∧ x>((55+(√(2665)))/2)≈53.31}
0.5(log10(x255x+90)log10(x36))=log102log10(x255x+90)1/2log10(x36)1/2=log1021/2log10(x255x+90x36)1/2=log1021/2(x255x+90x36)1/2=21/2x255x+90x36=2x255x+902x+72=0x257x+162=0x254x3x+162=0x(x54)3(x54)=0(x54)(x3)=0x=3x=54Iff(x)=0.5(log10(x255x+90)log10(x36))log102Forrealf(x)x255x+90>0x36>0x36>0x>36.(i)Equationx255x+90=0hastwosolutionsx=55+26652,55+26652Soinequalityx255x+90>0hassolutions:x>55+2665253.31,x>55266521.69.(ii)Domainisintersectionof(i)&(ii){x:xRx>55+2665253.31}

Leave a Reply

Your email address will not be published. Required fields are marked *