Menu Close

0-a-dx-a-sinx-a-cosx-a-R-test-for-a-1-




Question Number 76956 by behi83417@gmail.com last updated on 01/Jan/20
∫_(  0) ^(        a)    (dx/( (√((a+sinx)(a+cosx))))) =?  [a∈R^+ ,test for:  a=1]
$$\underset{\:\:\mathrm{0}} {\overset{\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{a}}} {\int}}\:\:\:\frac{\boldsymbol{\mathrm{dx}}}{\:\sqrt{\left(\boldsymbol{\mathrm{a}}+\boldsymbol{\mathrm{sinx}}\right)\left(\boldsymbol{\mathrm{a}}+\boldsymbol{\mathrm{cosx}}\right)}}\:=? \\ $$$$\left[\boldsymbol{\mathrm{a}}\in\boldsymbol{\mathrm{R}}^{+} ,\boldsymbol{\mathrm{test}}\:\boldsymbol{\mathrm{for}}:\:\:\boldsymbol{\mathrm{a}}=\mathrm{1}\right] \\ $$
Answered by john santu last updated on 02/Jan/20
for a = 1   let I = ∫ (dx/( (√((1+sin x)(1+cos x)))))  = ∫ (dx/( (√(((1−sin^2 x)/(1−sin x))(2cos^2 ((x/2)))))))  = ∫ ((√(1−sin x))/( (√2) cos x cos ((x/2)))) dx  let tan ((x/2))= u
$${for}\:{a}\:=\:\mathrm{1}\: \\ $$$${let}\:{I}\:=\:\int\:\frac{{dx}}{\:\sqrt{\left(\mathrm{1}+\mathrm{sin}\:{x}\right)\left(\mathrm{1}+\mathrm{cos}\:{x}\right)}} \\ $$$$=\:\int\:\frac{{dx}}{\:\sqrt{\frac{\mathrm{1}−\mathrm{sin}\:^{\mathrm{2}} {x}}{\mathrm{1}−\mathrm{sin}\:{x}}\left(\mathrm{2cos}\:^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)\right)}} \\ $$$$=\:\int\:\frac{\sqrt{\mathrm{1}−\mathrm{sin}\:{x}}}{\:\sqrt{\mathrm{2}}\:\mathrm{cos}\:{x}\:\mathrm{cos}\:\left(\frac{{x}}{\mathrm{2}}\right)}\:{dx} \\ $$$${let}\:\mathrm{tan}\:\left(\frac{{x}}{\mathrm{2}}\right)=\:{u}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *