Menu Close

0-e-2arctg-t-2-dt-




Question Number 143622 by ArielVyny last updated on 16/Jun/21
∫_0 ^∝ e^(2arctg(t^2 )) dt
$$\int_{\mathrm{0}} ^{\propto} {e}^{\mathrm{2}{arctg}\left({t}^{\mathrm{2}} \right)} {dt} \\ $$
Answered by TheHoneyCat last updated on 17/Jun/21
arctan(t)→_(t→+∞) (π/2)>0  so e^(2arctan(t^2 )) →_(t→+∞) e^π >e^3 >e>1  thus ∃X∈R_+ ∣ ∀x∈[x,+∞[ e^(2arctan(x^2 )) >1  let X  be such a real number  ∫_0 ^(+∞) e^(2arctan(t^2 )) dt=∫_0 ^X e^(2arctan(t^2 )) dt + ∫_X ^(+∞) e^(2arctan(t^2 )) dt  ∫_0 ^X e^(2arctan(t^2 )) dt ∈R as the integral of a Continued function on a segment  ∫_X ^(+∞) e^(2arctan(t^2 )) dt ≥ ∫_X ^(+∞) dt=lim_(x→+∞) (x−X)=+∞    in a word: ∫_0 ^(+∞) e^(2artcan(t^2 )) dt=+∞ _■     perhaps you made a mistake when writting it...
$$\mathrm{arctan}\left({t}\right)\underset{{t}\rightarrow+\infty} {\rightarrow}\frac{\pi}{\mathrm{2}}>\mathrm{0} \\ $$$$\mathrm{so}\:{e}^{\mathrm{2arctan}\left({t}^{\mathrm{2}} \right)} \underset{{t}\rightarrow+\infty} {\rightarrow}{e}^{\pi} >{e}^{\mathrm{3}} >{e}>\mathrm{1} \\ $$$$\mathrm{thus}\:\exists\mathrm{X}\in\mathbb{R}_{+} \mid\:\forall{x}\in\left[{x},+\infty\left[\:{e}^{\mathrm{2arctan}\left({x}^{\mathrm{2}} \right)} >\mathrm{1}\right.\right. \\ $$$$\mathrm{let}\:\mathrm{X}\:\:\mathrm{be}\:\mathrm{such}\:\mathrm{a}\:\mathrm{real}\:\mathrm{number} \\ $$$$\int_{\mathrm{0}} ^{+\infty} {e}^{\mathrm{2arctan}\left({t}^{\mathrm{2}} \right)} {dt}=\int_{\mathrm{0}} ^{\mathrm{X}} {e}^{\mathrm{2arctan}\left({t}^{\mathrm{2}} \right)} {dt}\:+\:\int_{\mathrm{X}} ^{+\infty} {e}^{\mathrm{2arctan}\left({t}^{\mathrm{2}} \right)} {dt} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{X}} {e}^{\mathrm{2arctan}\left({t}^{\mathrm{2}} \right)} {dt}\:\in\mathbb{R}\:\mathrm{as}\:\mathrm{the}\:\mathrm{integral}\:\mathrm{of}\:\mathrm{a}\:\mathrm{Continued}\:\mathrm{function}\:\mathrm{on}\:\mathrm{a}\:\mathrm{segment} \\ $$$$\int_{\mathrm{X}} ^{+\infty} {e}^{\mathrm{2arctan}\left({t}^{\mathrm{2}} \right)} {dt}\:\geqslant\:\int_{\mathrm{X}} ^{+\infty} {dt}=\mathrm{lim}_{{x}\rightarrow+\infty} \left({x}−\mathrm{X}\right)=+\infty \\ $$$$ \\ $$$$\mathrm{in}\:\mathrm{a}\:\mathrm{word}:\:\int_{\mathrm{0}} ^{+\infty} {e}^{\mathrm{2artcan}\left({t}^{\mathrm{2}} \right)} {dt}=+\infty\:_{\blacksquare} \\ $$$$ \\ $$$${perhaps}\:{you}\:{made}\:{a}\:{mistake}\:{when}\:{writting}\:{it}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *