Menu Close

0-e-t-2-e-st-dt-please-help-




Question Number 6775 by Tawakalitu. last updated on 24/Jul/16
∫_0 ^∞ e^t^2  e^(−st)   dt    please help
$$\int_{\mathrm{0}} ^{\infty} {e}^{{t}^{\mathrm{2}} } {e}^{−{st}} \:\:{dt} \\ $$$$ \\ $$$${please}\:{help} \\ $$
Answered by Yozzii last updated on 24/Jul/16
b=∫_0 ^∞ e^(t^2 −st) dt=∫_0 ^∞ e^((t−0.5s)^2 −0.25s^2 ) dt  b=e^(−0.25s^2 ) ∫_0 ^∞ e^((t−0.5s)^2 ) dt.  u=t−0.5s⇒du=dt  ∴b=e^(−0.25s^2 ) (∫_(−0.5s) ^0 e^u^2  du+∫_0 ^∞ e^u^2  du)  ∫_0 ^∞ e^u^2  du is divergent while ∫_(−0.5s) ^0 e^u^2  du  is finite.  ∴ For nonzero s∈R, b=e^(−0.25s^2 ) {∫_(−0.5s) ^0 e^u^2  du+∫_0 ^∞ e^u^2  du}  does not exist.   If s=0,b=∫_0 ^∞ e^t^2  dt which is divergent also.
$${b}=\int_{\mathrm{0}} ^{\infty} {e}^{{t}^{\mathrm{2}} −{st}} {dt}=\int_{\mathrm{0}} ^{\infty} {e}^{\left({t}−\mathrm{0}.\mathrm{5}{s}\right)^{\mathrm{2}} −\mathrm{0}.\mathrm{25}{s}^{\mathrm{2}} } {dt} \\ $$$${b}={e}^{−\mathrm{0}.\mathrm{25}{s}^{\mathrm{2}} } \int_{\mathrm{0}} ^{\infty} {e}^{\left({t}−\mathrm{0}.\mathrm{5}{s}\right)^{\mathrm{2}} } {dt}. \\ $$$${u}={t}−\mathrm{0}.\mathrm{5}{s}\Rightarrow{du}={dt} \\ $$$$\therefore{b}={e}^{−\mathrm{0}.\mathrm{25}{s}^{\mathrm{2}} } \left(\int_{−\mathrm{0}.\mathrm{5}{s}} ^{\mathrm{0}} {e}^{{u}^{\mathrm{2}} } {du}+\int_{\mathrm{0}} ^{\infty} {e}^{{u}^{\mathrm{2}} } {du}\right) \\ $$$$\int_{\mathrm{0}} ^{\infty} {e}^{{u}^{\mathrm{2}} } {du}\:{is}\:{divergent}\:{while}\:\int_{−\mathrm{0}.\mathrm{5}{s}} ^{\mathrm{0}} {e}^{{u}^{\mathrm{2}} } {du} \\ $$$${is}\:{finite}. \\ $$$$\therefore\:{For}\:{nonzero}\:{s}\in\mathbb{R},\:{b}={e}^{−\mathrm{0}.\mathrm{25}{s}^{\mathrm{2}} } \left\{\int_{−\mathrm{0}.\mathrm{5}{s}} ^{\mathrm{0}} {e}^{{u}^{\mathrm{2}} } {du}+\int_{\mathrm{0}} ^{\infty} {e}^{{u}^{\mathrm{2}} } {du}\right\} \\ $$$${does}\:{not}\:{exist}.\: \\ $$$${If}\:{s}=\mathrm{0},{b}=\int_{\mathrm{0}} ^{\infty} {e}^{{t}^{\mathrm{2}} } {dt}\:{which}\:{is}\:{divergent}\:{also}. \\ $$
Commented by Tawakalitu. last updated on 24/Jul/16
Thanks so much, That means the queastion is wrong ??
$${Thanks}\:{so}\:{much},\:{That}\:{means}\:{the}\:{queastion}\:{is}\:{wrong}\:?? \\ $$
Commented by Yozzii last updated on 24/Jul/16
Not necessarily. The question may have  asked to see whether the improper  integral is convergent or divergent.
$${Not}\:{necessarily}.\:{The}\:{question}\:{may}\:{have} \\ $$$${asked}\:{to}\:{see}\:{whether}\:{the}\:{improper} \\ $$$${integral}\:{is}\:{convergent}\:{or}\:{divergent}. \\ $$
Commented by Tawakalitu. last updated on 24/Jul/16
Thanks
$${Thanks} \\ $$
Commented by Tawakalitu. last updated on 25/Jul/16
The question is evaluate
$${The}\:{question}\:{is}\:{evaluate} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *