Menu Close

0-e-x-2-e-x-x-dx-k-find-k-Euler-constant-




Question Number 140399 by mnjuly1970 last updated on 07/May/21
           𝛏 :=∫_0 ^( ∞)  ((e^(βˆ’x^2 ) βˆ’e^(βˆ’x) )/x) dx = k.Ξ³                find  ” k  ” ...            Ξ³ := Euler constant....
ΞΎ:=∫0∞eβˆ’x2βˆ’eβˆ’xxdx=k.Ξ³findβ€³k″…γ:=Eulerconstant….
Answered by qaz last updated on 07/May/21
βˆ’Ξ³=∫_0 ^∞ (e^(βˆ’x) βˆ’(1/(1+x)))(dx/x)  βˆ’Ξ³=∫_0 ^∞ (e^(βˆ’x^2 ) βˆ’(1/(1+x^2 )))((d(x^2 ))/x^2 )=2∫_0 ^∞ (e^(βˆ’x^2 ) βˆ’(1/(1+x^2 )))(dx/x)  β‡’βˆ’(Ξ³/2)=∫_0 ^∞ (e^(βˆ’x^2 ) βˆ’(1/(1+x^2 )))(dx/x)  ΞΎ=∫_0 ^∞ (e^(βˆ’x^2 ) βˆ’e^(βˆ’x) )(dx/x)  =∫_0 ^∞ {(e^(βˆ’x^2 ) βˆ’(1/(1+x^2 )))βˆ’(e^(βˆ’x) βˆ’(1/(1+x)))+((1/(1+x^2 ))βˆ’(1/(1+x)))}(dx/x)  =βˆ’(Ξ³/2)+Ξ³+∫_0 ^∞ ((1/(1+x^2 ))βˆ’(1/(1+x)))(dx/x)  =(Ξ³/2)+∫_0 ^∞ ((1/(1+x))βˆ’(x/(1+x^2 )))dx  =(Ξ³/2)+ln((1+x)/( (√(1+x^2 ))))∣_0 ^∞   =(Ξ³/2)  β‡’k=(1/2)
βˆ’Ξ³=∫0∞(eβˆ’xβˆ’11+x)dxxβˆ’Ξ³=∫0∞(eβˆ’x2βˆ’11+x2)d(x2)x2=2∫0∞(eβˆ’x2βˆ’11+x2)dxxβ‡’βˆ’Ξ³2=∫0∞(eβˆ’x2βˆ’11+x2)dxxΞΎ=∫0∞(eβˆ’x2βˆ’eβˆ’x)dxx=∫0∞{(eβˆ’x2βˆ’11+x2)βˆ’(eβˆ’xβˆ’11+x)+(11+x2βˆ’11+x)}dxx=βˆ’Ξ³2+Ξ³+∫0∞(11+x2βˆ’11+x)dxx=Ξ³2+∫0∞(11+xβˆ’x1+x2)dx=Ξ³2+ln1+x1+x2∣0∞=Ξ³2β‡’k=12
Commented by mnjuly1970 last updated on 07/May/21
   bravo  ...mr payan...
bravo…mrpayan…

Leave a Reply

Your email address will not be published. Required fields are marked *