0-e-x-2-e-x-x-dx-k-find-k-Euler-constant- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 140399 by mnjuly1970 last updated on 07/May/21 ΞΎ:=β«0βeβx2βeβxxdx=k.Ξ³findβ³kβ³β¦Ξ³:=Eulerconstantβ¦. Answered by qaz last updated on 07/May/21 βΞ³=β«0β(eβxβ11+x)dxxβΞ³=β«0β(eβx2β11+x2)d(x2)x2=2β«0β(eβx2β11+x2)dxxββΞ³2=β«0β(eβx2β11+x2)dxxΞΎ=β«0β(eβx2βeβx)dxx=β«0β{(eβx2β11+x2)β(eβxβ11+x)+(11+x2β11+x)}dxx=βΞ³2+Ξ³+β«0β(11+x2β11+x)dxx=Ξ³2+β«0β(11+xβx1+x2)dx=Ξ³2+ln1+x1+x2β£0β=Ξ³2βk=12 Commented by mnjuly1970 last updated on 07/May/21 bravoβ¦mrpayanβ¦ Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-74860Next Next post: Question-9330 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.