Menu Close

0-ln-cosh-x-cosh-x-dx-0-pi-2-log-1-sin-x-dx-




Question Number 141419 by mnjuly1970 last updated on 18/May/21
      𝛗:=∫_0 ^( ∞) ((ln(cosh(x)))/(cosh(x)))dx=^? ∫_0 ^( (π/2)) log((1/(sin(x))))dx
ϕ:=0ln(cosh(x))cosh(x)dx=?0π2log(1sin(x))dx
Answered by mindispower last updated on 18/May/21
t=ch(t)  =∫_1 ^∞ ((ln(t))/t).(dt/( (√(t^2 −1))))  =∫_1 ^∞ ((ln(t))/(t^2 (√(1−(1/t^2 )))))dt  let (1/t)=sin(y)  =∫_(π/2) ^0 ((ln((1/(sin(y)))))/( (√(1−sin^2 (y))))).−cos(y)dy  =∫_0 ^(π/2) ln((1/(sin(y))))dy
t=ch(t)=1ln(t)t.dtt21=1ln(t)t211t2dtlet1t=sin(y)=π20ln(1sin(y))1sin2(y).cos(y)dy=0π2ln(1sin(y))dy
Commented by mindispower last updated on 18/May/21
pleasur
pleasur
Commented by mnjuly1970 last updated on 18/May/21
thanks alot sir power..
thanksalotsirpower..
Answered by mnjuly1970 last updated on 18/May/21
        :=(1/2)∫_0 ^( ∞) ((cosh(x)ln(1+sinh^2 (x)))/(cosh^2 (x)))dx              :=^(sinh(x)=t) (1/2)∫_0 ^( ∞) ((ln(1+t^2 ))/(1+t^2 ))dt             :=^(t=tan(y)) (1/2)∫_0 ^( (π/2)) ((ln(1+tan^2 (y)))/1)dy            :=(1/2)∫_0 ^( (π/2)) ln((1/(cos(y))))^2 dy                :=∫_0 ^( (π/2)) −ln(cos(y))dy=∫_0 ^( (π/2)) −ln(sin(y))dy              ............ 𝛗:=∫_0 ^( (π/2)) ln((1/(sin(x))))dx=(π/2)ln(2)..........                          ..........m.n.july.1970..........
:=120cosh(x)ln(1+sinh2(x))cosh2(x)dx:=sinh(x)=t120ln(1+t2)1+t2dt:=t=tan(y)120π2ln(1+tan2(y))1dy:=120π2ln(1cos(y))2dy:=0π2ln(cos(y))dy=0π2ln(sin(y))dyϕ:=0π2ln(1sin(x))dx=π2ln(2)..m.n.july.1970.

Leave a Reply

Your email address will not be published. Required fields are marked *