Menu Close

0-ln-cosh-x-cosh-x-dx-0-pi-2-log-1-sin-x-dx-




Question Number 141419 by mnjuly1970 last updated on 18/May/21
      𝛗:=∫_0 ^( ∞) ((ln(cosh(x)))/(cosh(x)))dx=^? ∫_0 ^( (Ο€/2)) log((1/(sin(x))))dx
$$ \\ $$$$\:\:\:\:\boldsymbol{\phi}:=\int_{\mathrm{0}} ^{\:\infty} \frac{{ln}\left({cosh}\left({x}\right)\right)}{{cosh}\left({x}\right)}{dx}\overset{?} {=}\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} {log}\left(\frac{\mathrm{1}}{{sin}\left({x}\right)}\right){dx} \\ $$
Answered by mindispower last updated on 18/May/21
t=ch(t)  =∫_1 ^∞ ((ln(t))/t).(dt/( (√(t^2 βˆ’1))))  =∫_1 ^∞ ((ln(t))/(t^2 (√(1βˆ’(1/t^2 )))))dt  let (1/t)=sin(y)  =∫_(Ο€/2) ^0 ((ln((1/(sin(y)))))/( (√(1βˆ’sin^2 (y))))).βˆ’cos(y)dy  =∫_0 ^(Ο€/2) ln((1/(sin(y))))dy
$${t}={ch}\left({t}\right) \\ $$$$=\int_{\mathrm{1}} ^{\infty} \frac{{ln}\left({t}\right)}{{t}}.\frac{{dt}}{\:\sqrt{{t}^{\mathrm{2}} βˆ’\mathrm{1}}} \\ $$$$=\int_{\mathrm{1}} ^{\infty} \frac{{ln}\left({t}\right)}{{t}^{\mathrm{2}} \sqrt{\mathrm{1}βˆ’\frac{\mathrm{1}}{{t}^{\mathrm{2}} }}}{dt} \\ $$$${let}\:\frac{\mathrm{1}}{{t}}={sin}\left({y}\right) \\ $$$$=\int_{\frac{\pi}{\mathrm{2}}} ^{\mathrm{0}} \frac{{ln}\left(\frac{\mathrm{1}}{{sin}\left({y}\right)}\right)}{\:\sqrt{\mathrm{1}βˆ’{sin}^{\mathrm{2}} \left({y}\right)}}.βˆ’{cos}\left({y}\right){dy} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\frac{\mathrm{1}}{{sin}\left({y}\right)}\right){dy} \\ $$
Commented by mindispower last updated on 18/May/21
pleasur
$${pleasur} \\ $$$$ \\ $$
Commented by mnjuly1970 last updated on 18/May/21
thanks alot sir power..
$${thanks}\:{alot}\:{sir}\:{power}.. \\ $$
Answered by mnjuly1970 last updated on 18/May/21
        :=(1/2)∫_0 ^( ∞) ((cosh(x)ln(1+sinh^2 (x)))/(cosh^2 (x)))dx              :=^(sinh(x)=t) (1/2)∫_0 ^( ∞) ((ln(1+t^2 ))/(1+t^2 ))dt             :=^(t=tan(y)) (1/2)∫_0 ^( (Ο€/2)) ((ln(1+tan^2 (y)))/1)dy            :=(1/2)∫_0 ^( (Ο€/2)) ln((1/(cos(y))))^2 dy                :=∫_0 ^( (Ο€/2)) βˆ’ln(cos(y))dy=∫_0 ^( (Ο€/2)) βˆ’ln(sin(y))dy              ............ 𝛗:=∫_0 ^( (Ο€/2)) ln((1/(sin(x))))dx=(Ο€/2)ln(2)..........                          ..........m.n.july.1970..........
$$\:\:\:\:\:\:\:\::=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\infty} \frac{{cosh}\left({x}\right){ln}\left(\mathrm{1}+{sinh}^{\mathrm{2}} \left({x}\right)\right)}{{cosh}^{\mathrm{2}} \left({x}\right)}{dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\::\overset{{sinh}\left({x}\right)={t}} {=}\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\infty} \frac{{ln}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$$$\:\:\:\:\:\:\:\:\:\:\::\overset{{t}={tan}\left({y}\right)} {=}\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{{ln}\left(\mathrm{1}+{tan}^{\mathrm{2}} \left({y}\right)\right)}{\mathrm{1}}{dy} \\ $$$$\:\:\:\:\:\:\:\:\:\::=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} {ln}\left(\frac{\mathrm{1}}{{cos}\left({y}\right)}\right)^{\mathrm{2}} {dy} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\::=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} βˆ’{ln}\left({cos}\left({y}\right)\right){dy}=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} βˆ’{ln}\left({sin}\left({y}\right)\right){dy} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:…………\:\boldsymbol{\phi}:=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} {ln}\left(\frac{\mathrm{1}}{{sin}\left({x}\right)}\right){dx}=\frac{\pi}{\mathrm{2}}{ln}\left(\mathrm{2}\right)………. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:……….{m}.{n}.{july}.\mathrm{1970}………. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *