Menu Close

0-lnx-x-1-2-dx-2-3-pi-2-




Question Number 140202 by qaz last updated on 05/May/21
∫_0 ^∞ (((lnx)/(x−1)))^2 dx=(2/3)π^2
0(lnxx1)2dx=23π2
Answered by mathmax by abdo last updated on 05/May/21
Φ =∫_0 ^∞  ((log^2 x)/((1−x)^2 ))dx    ⇒Φ=∫_0 ^1  ((log^2 x)/((1−x)^2 ))dx +∫_1 ^∞  ((log^2 x)/((1−x)^2 ))dx(→x=(1/t))  =∫_0 ^1  ((log^2 x)/((1−x)^2 ))dx−∫_0 ^1  ((log^2 t)/((1−(1/t))^2 ))(−(dt/t^2 )) =2∫_0 ^1  ((log^2 x)/((1−x)^2 ))dx we have  (1/(1−x)) =Σ_(n=0) ^∞  x^n  ⇒(1/((1−x)^2 )) =Σ_(n=1) ^∞  nx^(n−1)    (by derivation) ⇒  (1/((1−x)^2 ))=Σ_(n=1) ^∞  nx^(n−1)  ⇒Φ =2 ∫_0 ^1  Σ_(n=1) ^∞  nx^(n−1)  log^2 x dx  =2 Σ_(n=1) ^∞  n U_n     with U_n =∫_0 ^1  x^(n−1)  log^2  xdx by parts  U_n =[(x^n /n)log^2 x]_0 ^1 −∫_0 ^1  (x^n /n)((2logx)/x)dx =−(2/n) ∫_0 ^1  x^(n−1) logx dx  =−(2/n)( [(x^n /n)logx]_0 ^1 −∫_0 ^1  (x^n /n)(dx/x)) =−(2/n)(−(1/n) ∫_0 ^1  x^(n−1) dx)  =(2/n^3 ) ⇒Φ =2 Σ_(n=1) ^∞  n×(2/n^3 ) =4 Σ_(n=1) ^∞  (1/n^2 ) =4×(π^2 /6) =((2π^2 )/3) ⇒  ∫_0 ^∞   (((logx)/(x−1)))^2 dx =(2/3)π^2
Φ=0log2x(1x)2dxΦ=01log2x(1x)2dx+1log2x(1x)2dx(x=1t)=01log2x(1x)2dx01log2t(11t)2(dtt2)=201log2x(1x)2dxwehave11x=n=0xn1(1x)2=n=1nxn1(byderivation)1(1x)2=n=1nxn1Φ=201n=1nxn1log2xdx=2n=1nUnwithUn=01xn1log2xdxbypartsUn=[xnnlog2x]0101xnn2logxxdx=2n01xn1logxdx=2n([xnnlogx]0101xnndxx)=2n(1n01xn1dx)=2n3Φ=2n=1n×2n3=4n=11n2=4×π26=2π230(logxx1)2dx=23π2
Answered by Ar Brandon last updated on 05/May/21
=∫_0 ^1 ((ln^2 x)/((1−x)^2 ))dx+∫_0 ^1 ((ln^2 x)/((1−x)^2 ))dx=2∫_0 ^1 ((ln^2 x)/((1−x)^2 ))dx  =2[−((ln^2 x)/(1−x))+2∫_0 ^1 ((lnx)/(x(1−x)))dx]_0 ^1   =((2ln^2 x)/(x−1))+4∫_0 ^1 [((lnx)/x)+((lnx)/(1−x))]dx  =((2ln^2 x)/(x−1))+2ln^2 x+4∫_0 ^1 ((lnx)/(1−x))dx=−4ψ′(1)  =4Σ_(n=0) ^∞ (1/((n+1)^2 ))=4ζ(2)=4×(π^2 /6)=((2π^2 )/3)
=01ln2x(1x)2dx+01ln2x(1x)2dx=201ln2x(1x)2dx=2[ln2x1x+201lnxx(1x)dx]01=2ln2xx1+401[lnxx+lnx1x]dx=2ln2xx1+2ln2x+401lnx1xdx=4ψ(1)=4n=01(n+1)2=4ζ(2)=4×π26=2π23

Leave a Reply

Your email address will not be published. Required fields are marked *