0-lnx-x-1-2-dx-2-3-pi-2- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 140202 by qaz last updated on 05/May/21 ∫0∞(lnxx−1)2dx=23π2 Answered by mathmax by abdo last updated on 05/May/21 Φ=∫0∞log2x(1−x)2dx⇒Φ=∫01log2x(1−x)2dx+∫1∞log2x(1−x)2dx(→x=1t)=∫01log2x(1−x)2dx−∫01log2t(1−1t)2(−dtt2)=2∫01log2x(1−x)2dxwehave11−x=∑n=0∞xn⇒1(1−x)2=∑n=1∞nxn−1(byderivation)⇒1(1−x)2=∑n=1∞nxn−1⇒Φ=2∫01∑n=1∞nxn−1log2xdx=2∑n=1∞nUnwithUn=∫01xn−1log2xdxbypartsUn=[xnnlog2x]01−∫01xnn2logxxdx=−2n∫01xn−1logxdx=−2n([xnnlogx]01−∫01xnndxx)=−2n(−1n∫01xn−1dx)=2n3⇒Φ=2∑n=1∞n×2n3=4∑n=1∞1n2=4×π26=2π23⇒∫0∞(logxx−1)2dx=23π2 Answered by Ar Brandon last updated on 05/May/21 =∫01ln2x(1−x)2dx+∫01ln2x(1−x)2dx=2∫01ln2x(1−x)2dx=2[−ln2x1−x+2∫01lnxx(1−x)dx]01=2ln2xx−1+4∫01[lnxx+lnx1−x]dx=2ln2xx−1+2ln2x+4∫01lnx1−xdx=−4ψ′(1)=4∑∞n=01(n+1)2=4ζ(2)=4×π26=2π23 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-9128Next Next post: Evaluate-n-1-H-n-n-here-H-n-is-the-nth-harmonic-number- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.