Menu Close

0-lnx-x-1-3-dx-pi-2-




Question Number 140200 by qaz last updated on 05/May/21
∫_0 ^∞ (((lnx)/(x−1)))^3 dx=π^2
0(lnxx1)3dx=π2
Commented by Ar Brandon last updated on 05/May/21
Φ=∫_0 ^∞ (((lnx)/(x−1)))^3 dx=∫_0 ^1 (((lnx)/(x−1)))^3 dx+∫_1 ^∞ (((lnx)/(x−1)))^3 dx      =∫_0 ^1 ((ln^3 x)/((x−1)^3 ))dx+∫_0 ^1 ((xln^3 x)/((x−1)^3 ))dx      =∫_0 ^1 ((ln^3 x)/((x−1)^2 ))dx+2∫_0 ^1 ((ln^3 x)/((x−1)^3 ))dx      =[−((ln^3 x)/(x−1))+3∫((ln^2 x)/(x(x−1)))dx]_0 ^1 +2[−((ln^3 x)/(2(x−1)^2 ))+(3/2)∫((ln^2 x)/(x(x−1)^2 ))dx]_0 ^1       =[−((ln^3 x)/(x−1))−((ln^3 x)/((x−1)^2 ))]_0 ^1 −3[∫((ln^2 x)/x)dx−∫((ln^2 x)/(x−1))dx]_0 ^1 −3[∫((ln^2 x)/(x(x−1)))dx−∫((ln^2 x)/((x−1)^2 ))dx]_0 ^1       =−ln^3 x+3ψ′′(1)+3[∫((ln^2 x)/x)dx−∫((ln^2 x)/(x−1))dx]−3[−((ln^2 x)/(x−1))+2∫((lnx)/(x(x−1)))dx]      =−ln^3 x+3ψ′′(1)+ln^3 x−3ψ′′(1)+((3ln^2 x)/(x−1))−6[∫((lnx)/x)dx+∫((lnx)/(x−1))dx]      =((3ln^2 x)/(x−1))−3ln^2 x−6ψ′(1)=6Σ_(n=0) ^∞ (1/((n+1)^2 ))=6ζ(2)=π^2
Φ=0(lnxx1)3dx=01(lnxx1)3dx+1(lnxx1)3dx=01ln3x(x1)3dx+01xln3x(x1)3dx=01ln3x(x1)2dx+201ln3x(x1)3dx=[ln3xx1+3ln2xx(x1)dx]01+2[ln3x2(x1)2+32ln2xx(x1)2dx]01=[ln3xx1ln3x(x1)2]013[ln2xxdxln2xx1dx]013[ln2xx(x1)dxln2x(x1)2dx]01=ln3x+3ψ(1)+3[ln2xxdxln2xx1dx]3[ln2xx1+2lnxx(x1)dx]=ln3x+3ψ(1)+ln3x3ψ(1)+3ln2xx16[lnxxdx+lnxx1dx]=3ln2xx13ln2x6ψ(1)=6n=01(n+1)2=6ζ(2)=π2
Answered by mathmax by abdo last updated on 05/May/21
I =∫_0 ^∞  ((log^3 x)/((1−x)^3 ))dx ⇒I =−∫_0 ^1  ((log^3 x)/((1−x)^3 ))dx−∫_1 ^∞  ((log^3 x)/((1−x)^3 ))dx(→x=(1/t))  =−∫_0 ^1  ((log^3 x)/((1−x)^3 ))+∫_0 ^1  ((−log^3 t)/((1−(1/t))^3 ))(−(dt/t^2 ))  =−∫_0 ^1  ((log^3 x)/((1−x)^3 ))dx−∫_0 ^1  ((tlog^3 t)/((1−t)^3 )) dt  =−∫_0 ^1 (((1+x)log^3 x)/((1−x)^3 ))dx  we have (1/(1−x))=Σ_(n=0) ^∞  x^n  ⇒(1/((1−x)^2 ))=Σ_(n=1) ^∞ nx^(n−1)   ⇒((2(1−x))/((1−x)^4 )) =Σ_(n=2) ^∞ n(n−1)x^(n−2)  ⇒(2/((1−x)^3 )) =Σ_(n=2) ^∞  n(n−1)x^(n−2)   ⇒  I =−(1/2)∫_0 ^1 Σ_(n=2) ^∞ n(n−1)x^(n−2)  (1+x)log^3 x dx  =−(1/2)Σ_(n=2) ^∞  n(n−1)∫_0 ^1 (x^(n−2)  +x^(n−1) )log^3 xdx  =−(1/2)Σ_(n=2) ^∞ n(n−1) X_n   X_n =∫_0 ^1  (x^(n−2)  +x^(n−1) )log^3 xdx  =[(x^(n−1) /(n−1))+(x^n /n))log^3 x]_0 ^1 −∫_0 ^1 ((x^(n−1) /(n−1))+(x^n /n))3log^2 x (dx/x)  =−3 ∫_0 ^1  ((x^(n−2) /(n−1)) +(x^(n−1) /n))log^2 x dx  =−3{  [(x^(n−1) /((n−1)^2 ))+(x^n /n^2 ))log^2 x]_0 ^1 −∫_0 ^1 ((x^(n−1) /((n−1)^2 ))+(x^n /n^2 ))((2logx)/x)dx  =6 ∫_0 ^1 ((x^(n−2) /((n−1)^2 )) +(x^(n−1) /n^2 ))log xdx  =6{[((x^(n−1) /((n−1)^3 )) +(x^n /n^3 ))logx]_0 ^1 −∫_0 ^1 ((x^(n−1) /((n−1)^3 ))+(x^n /n^3 ))(dx/x)  =−6 ∫_0 ^1 ( (x^(n−2) /((n−1)^3 )) +(x^(n−1) /n^3 ))dx =−6[(1/((n−1)^4 ))x^(n−1)  +(1/n^4 )x^n ]_0 ^1   =−6((1/((n−1)^4 )) +(1/n^4 )) ⇒  I =3 Σ_(n=2) ^∞ n(n−1)((1/((n−1)^4 ))+(1/n^4 ))  =3 Σ_(n=2) ^∞  (n/((n−1)^3 )) +3 Σ_(n=2) ^∞  ((n−1)/n^3 )  =3 Σ_(n=1) ^∞  ((n+1)/n^3 ) +3 Σ_(n=1) ^∞  ((n−1)/n^3 )  =6 Σ_(n=1) ^∞  (1/n^2 ) =6.(π^2 /6)=π^2  ⇒ ∫_0 ^∞  (((logx)/(x−1)))^3  =π^2
I=0log3x(1x)3dxI=01log3x(1x)3dx1log3x(1x)3dx(x=1t)=01log3x(1x)3+01log3t(11t)3(dtt2)=01log3x(1x)3dx01tlog3t(1t)3dt=01(1+x)log3x(1x)3dxwehave11x=n=0xn1(1x)2=n=1nxn12(1x)(1x)4=n=2n(n1)xn22(1x)3=n=2n(n1)xn2I=1201n=2n(n1)xn2(1+x)log3xdx=12n=2n(n1)01(xn2+xn1)log3xdx=12n=2n(n1)XnXn=01(xn2+xn1)log3xdx=[xn1n1+xnn)log3x]0101(xn1n1+xnn)3log2xdxx=301(xn2n1+xn1n)log2xdx=3{[xn1(n1)2+xnn2)log2x]0101(xn1(n1)2+xnn2)2logxxdx=601(xn2(n1)2+xn1n2)logxdx=6{[(xn1(n1)3+xnn3)logx]0101(xn1(n1)3+xnn3)dxx=601(xn2(n1)3+xn1n3)dx=6[1(n1)4xn1+1n4xn]01=6(1(n1)4+1n4)I=3n=2n(n1)(1(n1)4+1n4)=3n=2n(n1)3+3n=2n1n3=3n=1n+1n3+3n=1n1n3=6n=11n2=6.π26=π20(logxx1)3=π2

Leave a Reply

Your email address will not be published. Required fields are marked *