Menu Close

0-pi-2-1-sec-2-t-sec-t-1-sec-t-2-2-dt-




Question Number 136969 by liberty last updated on 28/Mar/21
∫_0 ^( π/2) (((1+sec^2 t) (√(sec t)))/((1+sec t)^2 −2)) dt =?
0π/2(1+sec2t)sect(1+sect)22dt=?
Answered by EDWIN88 last updated on 28/Mar/21
 E = ∫_0 ^( π/2) (((1+sec^2  t)(√(sec t)))/((1+sec t)^2 −2)) dt  E=∫_0 ^( π/2) ((1+cos^2 t)/( (√(cos t)) (1+2cos t−cos^2 t))) dt  making change of variable u =(√(cos t))  E=∫_1 ^( 0)  ((u^4 +1)/(u(1+2u^2 −u^4 ))).(−((2u)/( (√(1−u^4 )))))du  E=2∫_0 ^( 1)  ((u^4 +1)/((1+2u^2 −u^4 )(√(1−u^4 )))) du  E=2∫_0 ^( 1) ((1+u^(−4) )/((u^(−2) +2−u^2 )(√(u^(−2) −u^2 )))) du  set (√(u^(−2) −u^2 )) = v   E = 2∫_0 ^( ∞)  (dv/(v^2 +2)) = (√2) [arctan ((v/( (√2))))]_0 ^∞   E = (π/( (√2))) .
E=0π/2(1+sec2t)sect(1+sect)22dtE=0π/21+cos2tcost(1+2costcos2t)dtmakingchangeofvariableu=costE=10u4+1u(1+2u2u4).(2u1u4)duE=201u4+1(1+2u2u4)1u4duE=2011+u4(u2+2u2)u2u2dusetu2u2=vE=20dvv2+2=2[arctan(v2)]0E=π2.
Commented by liberty last updated on 28/Mar/21
great
great

Leave a Reply

Your email address will not be published. Required fields are marked *