Menu Close

0-pi-2-2xsin-2-t-cos-2-t-x-2-sin-2-t-dt-




Question Number 143962 by lapache last updated on 20/Jun/21
∫_0 ^(π/2) ((2xsin^2 t)/(cos^2 t+x^2 sin^2 t))dt=.....???
0π22xsin2tcos2t+x2sin2tdt=..???
Answered by Dwaipayan Shikari last updated on 20/Jun/21
(2/x)∫_0 ^(π/2) ((x^2 sin^2 t)/(cos^2 t+x^2 sin^2 t))dt  =(2/x)∫_0 ^(π/2) 1−((cos^2 t)/(cos^2 t+x^2 sin^2 t))dt=(π/x)−∫_0 ^(π/2) (1/(1+x^2 tan^2 t))dt  =(π/x)−∫_0 ^∞ (1/((1+(xu)^2 )(1+u^2 )))du  =(π/x)+(1/(x^2 −1))∫_0 ^∞ (1/(1+x^2 u^2 ))−(1/(1+u^2 ))du  =(π/x)+(1/(x^2 −1))((π/(2x))−(π/2))=(π/x)−(π/(2x(x+1)))=(π/(2x))+(π/((2x+1)))
2x0π2x2sin2tcos2t+x2sin2tdt=2x0π21cos2tcos2t+x2sin2tdt=πx0π211+x2tan2tdt=πx01(1+(xu)2)(1+u2)du=πx+1x21011+x2u211+u2du=πx+1x21(π2xπ2)=πxπ2x(x+1)=π2x+π(2x+1)
Commented by mnjuly1970 last updated on 20/Jun/21
 please rechech pen−ultimate  line     ( coefficient )
pleaserechechpenultimateline(coefficient)
Answered by ArielVyny last updated on 20/Jun/21
∫_0 ^(π/2) (1/((cos^2 t+x^2 sin^2 t)/(2xsin^2 t)))dt  ∫_0 ^(π/2) (1/((1/(2x))×(1/(tan^2 t))+(x/2)))dt=2∫_0 ^(π/2) (1/((1/(xtan^2 t))+x))dt  2∫_0 ^(π/2) (1/((1+(xtant)^2 )/(xtan^2 t)))=2x∫_0 ^(π/2) ((tan^2 t)/(1+x^2 tan^2 t))dt
0π21cos2t+x2sin2t2xsin2tdt0π2112x×1tan2t+x2dt=20π211xtan2t+xdt20π211+(xtant)2xtan2t=2x0π2tan2t1+x2tan2tdt

Leave a Reply

Your email address will not be published. Required fields are marked *