Menu Close

0-pi-2-cos-2-t-sint-dt-




Question Number 142643 by ArielVyny last updated on 03/Jun/21
∫_0 ^(π/2) ((cos^2 t)/(sint))dt
0π2cos2tsintdt
Answered by MJS_new last updated on 03/Jun/21
∫((cos^2  t)/(sin t))dt=∫((1−sin^2  t)/(sin t))dt=∫(−sin t +csc t)dt=  =cos t +ln tan (t/2) +C  ⇒ Integral doesn′t converge
cos2tsintdt=1sin2tsintdt=(sint+csct)dt==cost+lntant2+CIntegraldoesntconverge
Commented by ArielVyny last updated on 03/Jun/21
in [0.(π/2)] integral does not converge ?
in[0.π2]integraldoesnotconverge?
Commented by MJS_new last updated on 03/Jun/21
yes.  [cos x]_0 ^(π/2) =0−1=−1  [ln tan (x/2)]_0 ^(π/2) =0−lim_(x→0^+ )  ln tan (x/2)     but this limit doesn′t exist
yes.Missing \left or extra \right[lntanx2]0π/2=0limx0+lntanx2butthislimitdoesntexist

Leave a Reply

Your email address will not be published. Required fields are marked *