Menu Close

0-pi-2-cos-2-x-cos-x-pi-4-dx-




Question Number 139414 by mathdanisur last updated on 26/Apr/21
∫_( 0) ^( π/2) ((cos^2 x)/(cos(x−π/4))) dx
π/20cos2xcos(xπ/4)dx
Commented by mr W last updated on 27/Apr/21
(1/2)[ln ((1+sin (x−(π/4)))/(1−sin (x−(π/4))))]_0 ^(π/2) =(1/2)ln ((1+((√2)/2))/(1−((√2)/2)))=ln (1+(√2))
12[ln1+sin(xπ4)1sin(xπ4)]0π2=12ln1+22122=ln(1+2)
Answered by Ar Brandon last updated on 27/Apr/21
=∫_0 ^(π/2) ((cos^2 x)/(cos(x−(π/4))))dx...(1), u=(π/2)−x  =∫_0 ^(π/2) ((sin^2 x)/(cos((π/4)−x)))dx=∫_0 ^(π/2) ((sin^2 x)/(cos(x−(π/4))))dx...(2)  (1)+(2)  =(1/2)∫_0 ^(π/2) ((cos^2 x+sin^2 x)/(cos(x−(π/4))))dx=(1/2)∫_0 ^(π/2) (dx/(cos(x−(π/4))))  =(1/2)[ln∣sec(x−(π/4))+tan(x−(π/4))∣]_0 ^(π/2)   =(1/2)[ln∣sec((π/4))+tan((π/4))∣−ln∣sec(−(π/4))+tan(−(π/4))∣]  =(1/2)[ln∣(√2)+1∣−ln∣(√2)−1∣]=(1/2)ln∣(((√2)+1)/( (√2)−1))∣=ln((√2)+1)
=0π2cos2xcos(xπ4)dx(1),u=π2x=0π2sin2xcos(π4x)dx=0π2sin2xcos(xπ4)dx(2)(1)+(2)=120π2cos2x+sin2xcos(xπ4)dx=120π2dxcos(xπ4)=12[lnsec(xπ4)+tan(xπ4)]0π2=12[lnsec(π4)+tan(π4)lnsec(π4)+tan(π4)]=12[ln2+1ln21]=12ln2+121∣=ln(2+1)
Commented by mathdanisur last updated on 30/Apr/21
thankyou sir
thankyousir

Leave a Reply

Your email address will not be published. Required fields are marked *