Question Number 137991 by EnterUsername last updated on 08/Apr/21

Answered by Ar Brandon last updated on 08/Apr/21

Commented by Ar Brandon last updated on 08/Apr/21
![ψ(α)=−γ+Σ_(n=0) ^∞ ((1/(n+1))−(1/(n+α))) ψ′(α)=Σ_(n=0) ^∞ (1/((n+α)^2 )) , ψ′′(α)=Σ_(n=0) ^∞ ((−2)/((n+α)^3 )) ⇒ψ′(1)=Σ_(n=0) ^∞ (1/((n+1)^2 ))=Σ_(n=1) ^∞ (1/n^2 )=ζ(2)=(π^2 /6) ⇒ψ′((1/2))=Σ_(n=0) ^∞ (1/((n+(1/2))^2 ))=4Σ_(n=0) ^∞ (1/((2n+1)^2 ))=4×(π^2 /8)=(π^2 /2) Σ_(n=0) ^∞ (1/((2n+1)^2 ))=1+(1/3^2 )+(1/5^2 )+... =(1+(1/2^2 )+(1/3^2 )+(1/4^2 )+...)−((1/2^2 )+(1/4^2 )+(1/6^2 )+...) =(1+(1/2^2 )+(1/3^2 )+(1/4^2 )+...)−(1/2^2 )(1+(1/2^2 )+(1/3^2 )+...) =ζ(2)−(1/4)ζ(2)=(3/4)ζ(2)=(π^2 /8) ψ′′(1)=Σ_(n=0) ^∞ ((−2)/((n+1)^3 ))=−2Σ_(n=1) ^∞ (1/n^3 )=−2ζ(3) ψ′′((1/2))=−2Σ_(n=0) ^∞ (1/((n+(1/2))^3 ))=−16Σ_(n=0) ^∞ (1/((2n+1)^3 )) =−16(1+(1/3^3 )+(1/5^3 )+...) =−16[(1+(1/2^3 )+(1/3^3 )+(1/4^3 )+(1/5^3 )+..)−(1/2^3 )(1+(1/2^3 )+(1/3^3 )+(1/4^3 )+...)] =−16×(1−(1/2^3 ))ζ(3)=−14ζ(3)](https://www.tinkutara.com/question/Q137993.png)
Commented by Dwaipayan Shikari last updated on 08/Apr/21

Commented by Ar Brandon last updated on 08/Apr/21
