Menu Close

0-pi-2-ln-3-sinx-dx-




Question Number 137991 by EnterUsername last updated on 08/Apr/21
∫_0 ^(π/2) ln^3 (sinx)dx
0π2ln3(sinx)dx
Answered by Ar Brandon last updated on 08/Apr/21
f(α)=∫_0 ^(π/2) sin^(α−1) xdx=(1/2)β((α/2),(1/2))=(((√π)Γ((α/2)))/(2Γ(((α+1)/2)))) , f(1)=(π/2)★  ln(f(α))=ln(Γ((α/2)))−ln(Γ(((α+1)/2)))+ln(((√π)/2))  ((f ′(α))/(f(α)))=((Γ′((α/2)))/(2Γ((α/2))))−((Γ′(((α+1)/2)))/(2Γ(((α+1)/2))))=(1/2)ψ((α/2))−(1/2)ψ(((α+1)/2))  f ′(1)=(π/4)(ψ((1/2))−ψ(1))=(π/4)(−γ−2ln2+γ)=−((πln2)/2)★  f ′′(α)=((f ′(α))/2)(ψ((α/2))−ψ(((α+1)/2)))+((f(α))/4)(ψ′((α/2))−ψ′(((α+1)/2)))  f ′′(1)=−((πln2)/4)(ψ((1/2))−ψ(1))+(π/8)(ψ′((1/2))−ψ′(1))             =−((πln2)/4)(−γ−2ln2+γ)+(π/8)(3ζ(2)−ζ(2))=((πln^2 2)/2)+(π^3 /(24))★  f ′′′(α)=((f ′′(α))/2)(ψ((α/2))−ψ(((α+1)/2)))+((f ′(α))/4)(ψ′((α/2))−ψ′(((α+1)/2)))                +((f ′(α))/4)(ψ′((α/2))−ψ′(((α+1)/2)))+((f(α))/8)(ψ′′((α/2))−ψ′′(((α+1)/2)))  f ′′′(1)=(((πln^2 2)/4)+(π^3 /(48)))(−2ln2)−((πln2)/8)((π^2 /2)−(π^2 /6))                −((πln2)/8)((π^2 /2)−(π^2 /6))+(π/(16))(−16×(7/8)ζ(3)+2ζ(3))              =−((πln^3 2)/2)−((π^3 ln2)/(24))−((π^3 ln2)/(16))+((π^3 ln2)/(48))−((π^3 ln2)/(16))+((π^3 ln2)/(48))−((3π)/4)ζ(3)              =−((πln^3 2)/2)−((π^3 ln2)/8)−((3π)/4)ζ(3)★  ∫_0 ^(π/2) ln(sinx)dx=f ′(1), ∫_0 ^(π/2) ln^2 (sinx)dx=f ′′(1), ∫_0 ^(π/2) ln^3 (sinx)dx=f ′′′(1)
f(α)=0π2sinα1xdx=12β(α2,12)=πΓ(α2)2Γ(α+12),f(1)=π2ln(f(α))=ln(Γ(α2))ln(Γ(α+12))+ln(π2)f(α)f(α)=Γ(α2)2Γ(α2)Γ(α+12)2Γ(α+12)=12ψ(α2)12ψ(α+12)f(1)=π4(ψ(12)ψ(1))=π4(γ2ln2+γ)=πln22f(α)=f(α)2(ψ(α2)ψ(α+12))+f(α)4(ψ(α2)ψ(α+12))f(1)=πln24(ψ(12)ψ(1))+π8(ψ(12)ψ(1))=πln24(γ2ln2+γ)+π8(3ζ(2)ζ(2))=πln222+π324f(α)=f(α)2(ψ(α2)ψ(α+12))+f(α)4(ψ(α2)ψ(α+12))+f(α)4(ψ(α2)ψ(α+12))+f(α)8(ψ(α2)ψ(α+12))f(1)=(πln224+π348)(2ln2)πln28(π22π26)πln28(π22π26)+π16(16×78ζ(3)+2ζ(3))=πln322π3ln224π3ln216+π3ln248π3ln216+π3ln2483π4ζ(3)=πln322π3ln283π4ζ(3)0π2ln(sinx)dx=f(1),0π2ln2(sinx)dx=f(1),0π2ln3(sinx)dx=f(1)
Commented by Ar Brandon last updated on 08/Apr/21
ψ(α)=−γ+Σ_(n=0) ^∞ ((1/(n+1))−(1/(n+α)))  ψ′(α)=Σ_(n=0) ^∞ (1/((n+α)^2 )) , ψ′′(α)=Σ_(n=0) ^∞ ((−2)/((n+α)^3 ))  ⇒ψ′(1)=Σ_(n=0) ^∞ (1/((n+1)^2 ))=Σ_(n=1) ^∞ (1/n^2 )=ζ(2)=(π^2 /6)  ⇒ψ′((1/2))=Σ_(n=0) ^∞ (1/((n+(1/2))^2 ))=4Σ_(n=0) ^∞ (1/((2n+1)^2 ))=4×(π^2 /8)=(π^2 /2)  Σ_(n=0) ^∞ (1/((2n+1)^2 ))=1+(1/3^2 )+(1/5^2 )+...  =(1+(1/2^2 )+(1/3^2 )+(1/4^2 )+...)−((1/2^2 )+(1/4^2 )+(1/6^2 )+...)  =(1+(1/2^2 )+(1/3^2 )+(1/4^2 )+...)−(1/2^2 )(1+(1/2^2 )+(1/3^2 )+...)  =ζ(2)−(1/4)ζ(2)=(3/4)ζ(2)=(π^2 /8)  ψ′′(1)=Σ_(n=0) ^∞ ((−2)/((n+1)^3 ))=−2Σ_(n=1) ^∞ (1/n^3 )=−2ζ(3)  ψ′′((1/2))=−2Σ_(n=0) ^∞ (1/((n+(1/2))^3 ))=−16Σ_(n=0) ^∞ (1/((2n+1)^3 ))  =−16(1+(1/3^3 )+(1/5^3 )+...)  =−16[(1+(1/2^3 )+(1/3^3 )+(1/4^3 )+(1/5^3 )+..)−(1/2^3 )(1+(1/2^3 )+(1/3^3 )+(1/4^3 )+...)]  =−16×(1−(1/2^3 ))ζ(3)=−14ζ(3)
ψ(α)=γ+n=0(1n+11n+α)ψ(α)=n=01(n+α)2,ψ(α)=n=02(n+α)3ψ(1)=n=01(n+1)2=n=11n2=ζ(2)=π26ψ(12)=n=01(n+12)2=4n=01(2n+1)2=4×π28=π22n=01(2n+1)2=1+132+152+=(1+122+132+142+)(122+142+162+)=(1+122+132+142+)122(1+122+132+)=ζ(2)14ζ(2)=34ζ(2)=π28ψ(1)=n=02(n+1)3=2n=11n3=2ζ(3)ψ(12)=2n=01(n+12)3=16n=01(2n+1)3=16(1+133+153+)=16[(1+123+133+143+153+..)123(1+123+133+143+)]=16×(1123)ζ(3)=14ζ(3)
Commented by Dwaipayan Shikari last updated on 08/Apr/21
Peace in Chaos..
PeaceinChaos..
Commented by Ar Brandon last updated on 08/Apr/21
🐱😊😃
🐱😊😃

Leave a Reply

Your email address will not be published. Required fields are marked *