Question Number 138799 by TheSupreme last updated on 18/Apr/21

Answered by mathmax by abdo last updated on 19/Apr/21

Commented by mathmax by abdo last updated on 19/Apr/21

Commented by mathmax by abdo last updated on 19/Apr/21
![let try another way Φ=∫_0 ^∞ ((log(t−α))/(1+t^2 )) dt =Ψ(α) ⇒ Ψ^′ (α) =∫_0 ^∞ ((−1)/((t−α)(t^2 +1)))dt let decompose F(t) =(1/((t−α)(t^2 +1))) ⇒F(t)=(a/(t−α)) +((bt+c)/(t^2 +1)) a=(1/(α^2 +1)) ,lim_(t→+∞) tF(t)=0 =a+b ⇒b=−(1/(α^2 +1)) F(0)=−(1/α)=−(a/α) +c ⇒1=a−αc ⇒αc=a−1 ⇒c=((a−1)/α) =(((1/(α^2 +1))−1)/α) =−(α^2 /(α(α^2 +1)))=−(α/(α^2 +1)) ⇒F(t)=(1/((α^2 +1)(t−α))) +((−(1/(α^2 +1))t −(α/(α^2 +1)))/(t^2 +1)) ⇒∫_0 ^∞ F(t)dt =(1/(α^2 +1))∫_0 ^∞ (dt/(t−α))−(1/(2(α^2 +1)))∫_0 ^∞ ((2t)/(t^(2 ) +1))dt−(α/(α^2 +1))×(π/2) =(1/(α^2 +1))[log(((t−α)/( (√(t^(2 ) +1)))))]_0 ^∞ −((πα)/(α^2 +1)) =(1/(α^2 +1))(−log(−α))−((πα)/(2(α^2 +1))) ⇒Ψ(α)=−∫ ((log(−α))/(α^2 +1))dα −(π/4)log(1+α^2 ) +C....be continued...](https://www.tinkutara.com/question/Q138849.png)
Answered by phanphuoc last updated on 18/Apr/21
