Menu Close

0-pi-2-ln-tan-x-dx-C-




Question Number 138799 by TheSupreme last updated on 18/Apr/21
∫_0 ^(π/2) ln(tan(x)−α)dx=...  α∈C
0π2ln(tan(x)α)dx=αC
Answered by mathmax by abdo last updated on 19/Apr/21
Φ=∫_0 ^(π/2) ln(tanx−α)dx   ⇒Φ=_(tanx=t)   ∫_0 ^∞  ln(t−α)(dt/(1+t^2 ))  =∫_0 ^∞  ((ln(t−α))/(1+t^2 ))dt  let α=x+iy ⇒t−α =t−x−iy=(√((t−x)^2 +y^2 ))e^(iarctan(−(y/(t−x))))   ⇒Φ=∫_0 ^∞  ((ln((√((t−x)^2 +y^2 )))−iarctan((y/(t−x))))/(t^2  +1))dt  =(1/2)∫_0 ^∞  ((ln((t−x)^2 +y^2 ))/(t^2  +1))dt−i∫_0 ^∞  ((arctan((y/(t−x))))/(t^2  +1))dt   we have  ∫_0 ^∞  ((log((t−x)^2 +y^2 ))/(t^2  +1))dt =∫_0 ^∞  ((log(t^2 −2xt +x^2 +y^2 ))/(t^2  +1))dt  𝛟(x)=∫_0 ^∞     ((log(t^2 −2xt +x^2  +y^2 ))/(t^2 +1))dt ⇒  ϕ^′ (x)=∫_0 ^∞ ((−2t+2x)/((t^2 −2xt+x^2 +y^2 )(t^2  +1)))dt  we must decompose  F(t)=((−2t+2x)/((t^2 −2xt+x^2  +y^2 )(t^2  +1))) ....  ∫_0 ^∞  ((arctan((y/(t−x))))/(t^2  +1))dt =∫_0 ^∞  ((+^− (π/2)−arctan(((t−x)/y)))/(t^2  +1))dt  =+^(− ) (π^2 /4)−∫_0 ^∞   ((arctan(t−x))/(t^2  +1))dt +(π/2)arctany  Ψ(x)=∫_0 ^∞   ((arctan(t−x))/(t^2  +1))dt ⇒Ψ^′ (x)=∫_0 ^∞   ((−1)/((1+(t−x)^2 )(t^2  +1)))dt  =−∫_0 ^∞    (dt/((t^2 −2xt +x^2  +1)(t^2  +1)))  rest decomposition...be continued...
Φ=0π2ln(tanxα)dxΦ=tanx=t0ln(tα)dt1+t2=0ln(tα)1+t2dtletα=x+iytα=txiy=(tx)2+y2eiarctan(ytx)Φ=0ln((tx)2+y2)iarctan(ytx)t2+1dt=120ln((tx)2+y2)t2+1dti0arctan(ytx)t2+1dtwehave0log((tx)2+y2)t2+1dt=0log(t22xt+x2+y2)t2+1dtφ(x)=0log(t22xt+x2+y2)t2+1dtφ(x)=02t+2x(t22xt+x2+y2)(t2+1)dtwemustdecomposeF(t)=2t+2x(t22xt+x2+y2)(t2+1).0arctan(ytx)t2+1dt=0+π2arctan(txy)t2+1dt=+π240arctan(tx)t2+1dt+π2arctanyΨ(x)=0arctan(tx)t2+1dtΨ(x)=01(1+(tx)2)(t2+1)dt=0dt(t22xt+x2+1)(t2+1)restdecompositionbecontinued
Commented by mathmax by abdo last updated on 19/Apr/21
sorry  ∫_0 ^∞  ((+^− (π/2)−arctan(((t−x)/y)))/(t^2  +1))dt  =+^−  (π^2 /4)−∫_0 ^∞  ((arctan((t/y)−(x/y)))/(t^2  +1))dt so we considere  Ψ(x)=∫_0 ^∞  ((arctan((t/y)−(x/y)))/(t^2  +1))dt ⇒  Ψ^′ (y)=∫_0 ^∞ ((−1)/(y(1+((t/y)−(x/y))^2 )(t^2  +1)))dt=.....
sorry0+π2arctan(txy)t2+1dt=+π240arctan(tyxy)t2+1dtsoweconsidereΨ(x)=0arctan(tyxy)t2+1dtΨ(y)=01y(1+(tyxy)2)(t2+1)dt=..
Commented by mathmax by abdo last updated on 19/Apr/21
let try another way Φ=∫_0 ^∞ ((log(t−α))/(1+t^2 )) dt =Ψ(α) ⇒  Ψ^′ (α) =∫_0 ^∞   ((−1)/((t−α)(t^2  +1)))dt  let decompose  F(t) =(1/((t−α)(t^2  +1))) ⇒F(t)=(a/(t−α)) +((bt+c)/(t^2  +1))  a=(1/(α^2  +1))  ,lim_(t→+∞) tF(t)=0 =a+b ⇒b=−(1/(α^2  +1))  F(0)=−(1/α)=−(a/α) +c ⇒1=a−αc ⇒αc=a−1 ⇒c=((a−1)/α)  =(((1/(α^2 +1))−1)/α) =−(α^2 /(α(α^2  +1)))=−(α/(α^2  +1)) ⇒F(t)=(1/((α^2  +1)(t−α)))  +((−(1/(α^2  +1))t −(α/(α^2  +1)))/(t^2  +1)) ⇒∫_0 ^∞  F(t)dt  =(1/(α^2  +1))∫_0 ^∞ (dt/(t−α))−(1/(2(α^2 +1)))∫_0 ^∞   ((2t)/(t^(2 ) +1))dt−(α/(α^2  +1))×(π/2)  =(1/(α^2  +1))[log(((t−α)/( (√(t^(2 ) +1)))))]_0 ^∞ −((πα)/(α^2  +1))  =(1/(α^2  +1))(−log(−α))−((πα)/(2(α^2  +1))) ⇒Ψ(α)=−∫ ((log(−α))/(α^2  +1))dα  −(π/4)log(1+α^2 ) +C....be continued...
lettryanotherwayΦ=0log(tα)1+t2dt=Ψ(α)Ψ(α)=01(tα)(t2+1)dtletdecomposeF(t)=1(tα)(t2+1)F(t)=atα+bt+ct2+1a=1α2+1,limt+tF(t)=0=a+bb=1α2+1F(0)=1α=aα+c1=aαcαc=a1c=a1α=1α2+11α=α2α(α2+1)=αα2+1F(t)=1(α2+1)(tα)+1α2+1tαα2+1t2+10F(t)dt=1α2+10dttα12(α2+1)02tt2+1dtαα2+1×π2=1α2+1[log(tαt2+1)]0παα2+1=1α2+1(log(α))πα2(α2+1)Ψ(α)=log(α)α2+1dαπ4log(1+α2)+C.becontinued
Answered by phanphuoc last updated on 18/Apr/21
u=tgx−> du/1+u^2 =dx  I=∫_0 ^∞ ln(u+α)/u^2 +1du  I=2πiRes(f(u),i)=πln(i+α)
u=tgx>du/1+u2=dxI=0ln(u+α)/u2+1duI=2πiRes(f(u),i)=πln(i+α)

Leave a Reply

Your email address will not be published. Required fields are marked *