Menu Close

0-pi-2-log-sin-x-2-log-cos-x-2-2-cos-pi-4-x-2-dx-




Question Number 139399 by mathsuji last updated on 26/Apr/21
∫_0 ^(π/2) ((log(sin(x/2))+log(cos(x/2)))/( (√2)∙cos(π/4−x/2))) dx
π/20log(sin(x/2))+log(cos(x/2))2cos(π/4x/2)dx
Answered by Ar Brandon last updated on 26/Apr/21
Let u=(π/2)−x
Letu=π2x
Answered by Ar Brandon last updated on 26/Apr/21
I=∫_0 ^(π/2) ((ln(sin(x/2))+ln(cos(x/2)))/( (√2)cos((π/4)−(x/2))))dx    =∫_0 ^(π/2) ((ln(sin(x/2)cos(x/2)))/( (√2)cos((1/2)((π/2)−x))))dx=∫_0 ^(π/2) ((ln((1/2))+ln(sinx))/( (√2)cos((1/2)((π/2)−x))))dx    =−((ln2)/( (√2)))∫_0 ^(π/2) (dx/(cos((1/2)((π/2)−x))))+(1/( (√2)))∫_0 ^(π/2) ((ln(sinx))/(cos((1/2)((π/2)−x))))dx    =(√2)ln2[ln∣sec((π/4)−(x/2))+tan((π/4)−(x/2))∣]+(1/( (√2)))J  J=∫_0 ^(π/2) ((ln(cosx))/(cos((x/2))))dx
I=0π2ln(sinx2)+ln(cosx2)2cos(π4x2)dx=0π2ln(sinx2cosx2)2cos(12(π2x))dx=0π2ln(12)+ln(sinx)2cos(12(π2x))dx=ln220π2dxcos(12(π2x))+120π2ln(sinx)cos(12(π2x))dx=2ln2[lnsec(π4x2)+tan(π4x2)]+12JJ=0π2ln(cosx)cos(x2)dx
Answered by mathmax by abdo last updated on 26/Apr/21
I =∫_0 ^(π/2)  ((log(sin((x/2)))+log(cos((x/2))))/( (√2)cos((π/4)−(x/2))))dx ⇒  I =∫_0 ^(π/(2 )) ((log(((sinx)/2)))/( (√2)cos((π/4)−(x/2))))dx =_((π/4)−(x/2)=t)   ∫_(π/4) ^o  ((log((1/2)sin((π/2)−2t)))/( (√2)cost))(−2)dt  =(√2)∫_0 ^(π/4)  ((log(cos(2t))−log2)/(cost))dt  =(√2)∫_0 ^(π/4)  ((log(cos(2t)))/(cost))dt−(√2)log(2)∫_0 ^(π/4)  (dt/(cost))  ∫_0 ^(π/(4 )) ((log(cos(2t)))/(cost))dt =∫_0 ^(π/4)  ((log(2cos^2 t−1))/(cost))dt  =_(cost=x)    ∫_1 ^(1/( (√2)))    ((log(2x^2 −1))/x)(−(dx/( (√(1−x^2 )))))  =∫_(1/( (√2))) ^1  ((log(2x^2 −1))/(x(√(1−x^2 ))))dx   let f(a)=∫_(1/( (√2))) ^1  ((log(2x^2 −a))/(x(√(1−x^2 ))))dx with o<a<(√2)  f^′ (a)=−∫_(1/( (√2))) ^1  (1/((2x^2 −a)x(√(1−x^2 ))))dx  =_(x=sinθ)   − ∫_(π/4) ^(π/2)    ((cosθ dθ)/((2sin^2 θ−1)sinθ.cosθ))  =−∫_(π/4) ^(π/2)  (dθ/(sinθ(2sin^2 θ−a)))  F(u)=(1/(u(2u^2 −1))) =(1/(u((√2)u−(√a))((√2)u+(√a))))=(m/u)+(b/(u(√2)−(√a)))+(c/(u(√2)+(√a)))  ⇒f^′ (a) =−m∫_(π/4) ^(π/2)  (dθ/(sinθ))−b∫_(π/4) ^(π/2)  (dθ/( (√2)sinθ −(√a)))−c∫_(π/4) ^(π/2)  (dθ/( (√2)sinθ +(√a)))  ∫_(π/4) ^(π/2)  (dθ/(sinθ)) =_(tan((θ/2))=t)    ∫_((√2)−1) ^1  ((2dt)/((1+t^2 )×((2t)/(1+t^2 ))))=∫_((√2)−1) ^1  (dt/t)  =−log((√2)−1)  ∫_(π/4) ^(π/2)  (dθ/( (√2)sinθ−(√a))) =_(tan((θ/2))=y)   ∫_((√2)−1) ^1  ((2dy)/((1+y^2 )((√2)((2y)/(1+y^2 ))−(√a))))  =2∫_((√2)−1) ^1   (dy/(2(√2)y−(√a)−(√a)y^2 )) =−2∫_((√2)−1) ^1  (dy/( (√a)y^2  −2(√2)y+(√a)))  Δ^′  =2−a^2 >0 ⇒y_1 =(((√2)+(√(2−a^2 )))/( (√a))) and y_2 =(((√2)−(√(2−a^2 )))/( (√a)))  ....be continued....
I=0π2log(sin(x2))+log(cos(x2))2cos(π4x2)dxI=0π2log(sinx2)2cos(π4x2)dx=π4x2=tπ4olog(12sin(π22t))2cost(2)dt=20π4log(cos(2t))log2costdt=20π4log(cos(2t))costdt2log(2)0π4dtcost0π4log(cos(2t))costdt=0π4log(2cos2t1)costdt=cost=x112log(2x21)x(dx1x2)=121log(2x21)x1x2dxletf(a)=121log(2x2a)x1x2dxwitho<a<2f(a)=1211(2x2a)x1x2dx=x=sinθπ4π2cosθdθ(2sin2θ1)sinθ.cosθ=π4π2dθsinθ(2sin2θa)F(u)=1u(2u21)=1u(2ua)(2u+a)=mu+bu2a+cu2+af(a)=mπ4π2dθsinθbπ4π2dθ2sinθacπ4π2dθ2sinθ+aπ4π2dθsinθ=tan(θ2)=t2112dt(1+t2)×2t1+t2=211dtt=log(21)π4π2dθ2sinθa=tan(θ2)=y2112dy(1+y2)(22y1+y2a)=2211dy22yaay2=2211dyay222y+aΔ=2a2>0y1=2+2a2aandy2=22a2a.becontinued.
Answered by qaz last updated on 27/Apr/21
∫_0 ^(π/2) ((ln(sin (x/2))+ln(cos (x/2)))/( (√2)cos ((π/4)−(x/2))))dx  =2∫_0 ^(π/4) ((lnsin x+lncos x)/(cos x+sin x))dx  =2∫_0 ^(π/4) ((cos x−sin x)/(cos 2x))(lnsin x+lncos x)dx  =2∫_0 ^(π/4) ((cos x)/(cos 2x))(lnsin x+lncos x)dx−2∫_0 ^(π/4) ((sin x)/(cos 2x))(lnsin x+lncos x)dx  =2∫_0 ^(π/4) ((lncos x)/(cos 2x))cos xdx−2∫_0 ^(π/4) ((lnsin x)/(cos 2x))sin xdx  =∫_0 ^(π/4) ((ln(1−sin^2 x))/(1−2sin^2 x))d(sin x)+∫_0 ^(π/4) ((ln(1−cos^2 x))/(2cos^2 x−1))d(cos x)  =∫_0 ^(1/(√2)) ((ln(1−u^2 ))/(1−2u^2 ))du+∫_0 ^(1/(√2)) ((ln(1−v^2 ))/(2v^2 −1))dv  =0
0π/2ln(sinx2)+ln(cosx2)2cos(π4x2)dx=20π/4lnsinx+lncosxcosx+sinxdx=20π/4cosxsinxcos2x(lnsinx+lncosx)dx=20π/4cosxcos2x(lnsinx+lncosx)dx20π/4sinxcos2x(lnsinx+lncosx)dx=20π/4lncosxcos2xcosxdx20π/4lnsinxcos2xsinxdx=0π/4ln(1sin2x)12sin2xd(sinx)+0π/4ln(1cos2x)2cos2x1d(cosx)=01/2ln(1u2)12u2du+01/2ln(1v2)2v21dv=0

Leave a Reply

Your email address will not be published. Required fields are marked *