Menu Close

0-pi-2-sin-2-x-cos-6-x-dx-




Question Number 139285 by mohammad17 last updated on 25/Apr/21
∫_0 ^(π/2) sin^2 (x)cos^6 (x)dx
0π2sin2(x)cos6(x)dx
Answered by qaz last updated on 25/Apr/21
∫_0 ^(π/2) sin^2 xcos^6 xdx=(1/2)B((3/2),(7/2))  =((((1×5×3×1)/(2×2×2×2))π)/(2×4×3×2))=((5π)/(256))
0π/2sin2xcos6xdx=12B(32,72)=1×5×3×12×2×2×2π2×4×3×2=5π256
Commented by mohammad17 last updated on 25/Apr/21
thank you sir can you give me steb by steb  please?
thankyousircanyougivemestebbystebplease?
Commented by qaz last updated on 25/Apr/21
∫_0 ^(π/2) sin^p xcos^q xdx=(1/2)B(((p+1)/2),((q+1)/2))  =((Γ(((p+1)/2))Γ(((q+1)/2)))/(2Γ(((p+q+2)/2))))  Γ(x+1)=xΓ(x)  Γ((1/2))=(√π)
0π/2sinpxcosqxdx=12B(p+12,q+12)=Γ(p+12)Γ(q+12)2Γ(p+q+22)Γ(x+1)=xΓ(x)Γ(12)=π
Answered by MJS_new last updated on 25/Apr/21
∫sin^2  x cos^6  x dx=       [t=tan x → dx=cos^2  x dt]  =∫(t^2 /((t^2 +1)^5 ))dt=       [Ostrogradski′s Method]  =((t(15t^6 +55t^4 +73t^2 −15))/(384(t^2 +1)^4 ))+(5/(128))∫(dt/(t^2 +1))=  =((t(15t^6 +55t^4 +73t^2 −15))/(384(t^2 +1)^4 ))+(5/(128))arctan t  ⇒ answer is ((5π)/(256))
sin2xcos6xdx=[t=tanxdx=cos2xdt]=t2(t2+1)5dt=[OstrogradskisMethod]=t(15t6+55t4+73t215)384(t2+1)4+5128dtt2+1==t(15t6+55t4+73t215)384(t2+1)4+5128arctantansweris5π256

Leave a Reply

Your email address will not be published. Required fields are marked *