Menu Close

0-pi-2-sin-x-dx-




Question Number 10790 by Nur450737 last updated on 25/Feb/17
∫_0 ^(π/2) (√(sin x)) dx
$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \sqrt{\mathrm{sin}\:{x}}\:{dx} \\ $$
Answered by bahmanfeshki last updated on 26/Feb/17
(√(sin x))=t  t^2 =sin x⇒cos x=(√(1−t^2 ))  2t dt=cos x dx⇒dx=((2t)/( (√(1−t^2 ))))dt  ∫_0 ^1  ((2t^2 )/( (√(1−t^2 ))))dt=∫_0 ^(π/2) 2sin^2 vdv=[v−((sin 2v)/2)]_0 ^(π/2) =(π/2)
$$\sqrt{\mathrm{sin}\:{x}}={t} \\ $$$${t}^{\mathrm{2}} =\mathrm{sin}\:{x}\Rightarrow\mathrm{cos}\:{x}=\sqrt{\mathrm{1}−{t}^{\mathrm{2}} } \\ $$$$\mathrm{2}{t}\:{dt}=\mathrm{cos}\:{x}\:{dx}\Rightarrow{dx}=\frac{\mathrm{2}{t}}{\:\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}{dt} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{2}{t}^{\mathrm{2}} }{\:\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}{dt}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{2sin}\:^{\mathrm{2}} {vdv}=\left[{v}−\frac{\mathrm{sin}\:\mathrm{2}{v}}{\mathrm{2}}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} =\frac{\pi}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *