Question Number 140930 by bramlexs22 last updated on 14/May/21

Answered by Dwaipayan Shikari last updated on 14/May/21
![2∫_0 ^∞ (dt/( (√2)−((1−t^2 )/(1+t^2 )))).(1/(1+t^2 )) t=tan(x/2) =2∫_0 ^∞ (dt/( (√2)t^2 +(√2)−1+t^2 ))dt=(1/( (√2)+1))∫_(−∞) ^∞ (dt/(t^2 +(((√2)−1)/( (√2)+1))))dt =(1/( (√2)+1)).(√((((√2)+1)/( (√2)−1))[)) tan^(−1) (t(√(((√2)+1)/( (√2)−1))))]_(−∞) ^∞ dx =π](https://www.tinkutara.com/question/Q140931.png)
Commented by bramlexs22 last updated on 14/May/21

Commented by Dwaipayan Shikari last updated on 14/May/21

Answered by mathmax by abdo last updated on 14/May/21
![I=∫_0 ^π (dx/( (√2)−cosx)) we do the changement tan((x/2))=t ⇒ I =∫_0 ^∞ ((2dt)/((1+t^2 )((√2)−((1−t^2 )/(1+t^2 ))))) =2∫_0 ^∞ (dt/( (√2)+(√2)t^2 −1+t^2 )) =2∫_0 ^∞ (dt/((1+(√2))t^2 +(√2)−1)) =(2/(1+(√2)))∫_0 ^∞ (dt/(t^2 +(((√2)−1)/( (√2)+1)))) =(2/(1+(√2)))∫_0 ^∞ (dt/(t^2 +3−2(√2))) =_(t=(√(3−2(√2)))u) (2/(1+(√2))) ∫_0 ^∞ (((√(3−2(√2)))du)/((3−2(√2))(1+u^2 ))) =(2/((1+(√2))(√(3−2(√2)))))[arctanu]_0 ^∞ =(π/((1+(√2))(√(3−2(√2)))))](https://www.tinkutara.com/question/Q140953.png)
Commented by mathmax by abdo last updated on 14/May/21

Answered by iloveisrael last updated on 14/May/21
![R=∫_0 ^π (dx/(a−cos x)) ; a>1 put μ = tan (x/2) R=∫_0 ^π ((1+μ^2 )/(a+aμ^2 −1+μ^2 )) . (2/(1+μ^2 )) dμ (∗) a−1+(1+a)μ^2 ; set ((a−1)/(a+1)) = p^2 and μ=pu R= (2/(a+1)) ∫_0 ^( ∞) (p/(p^2 (1+u^2 ))) du R= (2/( (√(a^2 −1)))) [ arctan u ] _0^∞ R= (2/( (√(a^2 −1)))) .(π/2) = (π/( (√(a^2 −1)))) R= (π/( (√(((√2))^2 −1)))) = π](https://www.tinkutara.com/question/Q140960.png)