Menu Close

0-pi-dx-2-cos-x-




Question Number 140930 by bramlexs22 last updated on 14/May/21
∫_0 ^π  (dx/( (√2) −cos x))
π0dx2cosx
Answered by Dwaipayan Shikari last updated on 14/May/21
2∫_0 ^∞ (dt/( (√2)−((1−t^2 )/(1+t^2 )))).(1/(1+t^2 ))    t=tan(x/2)  =2∫_0 ^∞ (dt/( (√2)t^2 +(√2)−1+t^2 ))dt=(1/( (√2)+1))∫_(−∞) ^∞ (dt/(t^2 +(((√2)−1)/( (√2)+1))))dt  =(1/( (√2)+1)).(√((((√2)+1)/( (√2)−1))[)) tan^(−1) (t(√(((√2)+1)/( (√2)−1))))]_(−∞) ^∞ dx  =π
20dt21t21+t2.11+t2t=tanx2=20dt2t2+21+t2dt=12+1dtt2+212+1dt=12+1.2+121[tan1(t2+121)]dx=π
Commented by bramlexs22 last updated on 14/May/21
Weirrstrass substitution
Weirrstrasssubstitution
Commented by Dwaipayan Shikari last updated on 14/May/21
yes!
yes!
Answered by mathmax by abdo last updated on 14/May/21
I=∫_0 ^π  (dx/( (√2)−cosx)) we do the changement tan((x/2))=t ⇒  I =∫_0 ^∞   ((2dt)/((1+t^2 )((√2)−((1−t^2 )/(1+t^2 ))))) =2∫_0 ^∞  (dt/( (√2)+(√2)t^2 −1+t^2 ))  =2∫_0 ^∞  (dt/((1+(√2))t^2  +(√2)−1)) =(2/(1+(√2)))∫_0 ^∞  (dt/(t^2  +(((√2)−1)/( (√2)+1))))  =(2/(1+(√2)))∫_0 ^∞  (dt/(t^2  +3−2(√2))) =_(t=(√(3−2(√2)))u)    (2/(1+(√2))) ∫_0 ^∞   (((√(3−2(√2)))du)/((3−2(√2))(1+u^2 )))  =(2/((1+(√2))(√(3−2(√2)))))[arctanu]_0 ^∞  =(π/((1+(√2))(√(3−2(√2)))))
I=0πdx2cosxwedothechangementtan(x2)=tI=02dt(1+t2)(21t21+t2)=20dt2+2t21+t2=20dt(1+2)t2+21=21+20dtt2+212+1=21+20dtt2+322=t=322u21+20322du(322)(1+u2)=2(1+2)322[arctanu]0=π(1+2)322
Commented by mathmax by abdo last updated on 14/May/21
but  (√(3−2(√2)))=(√2)−1 ⇒ I =(π/(((√2)−1)((√2)+1))) =π
but322=21I=π(21)(2+1)=π
Answered by iloveisrael last updated on 14/May/21
 R=∫_0 ^π  (dx/(a−cos x)) ; a>1  put μ = tan (x/2)    R=∫_0 ^π  ((1+μ^2 )/(a+aμ^2 −1+μ^2 )) . (2/(1+μ^2 )) dμ   (∗) a−1+(1+a)μ^2  ; set ((a−1)/(a+1)) = p^2    and μ=pu    R= (2/(a+1)) ∫_0 ^(  ∞)  (p/(p^2 (1+u^2 ))) du   R= (2/( (√(a^2 −1)))) [ arctan  u ] _0^∞    R= (2/( (√(a^2 −1)))) .(π/2) = (π/( (√(a^2 −1))))   R= (π/( (√(((√2))^2 −1)))) = π
R=π0dxacosx;a>1putμ=tanx2R=π01+μ2a+aμ21+μ2.21+μ2dμ()a1+(1+a)μ2;seta1a+1=p2andμ=puR=2a+10pp2(1+u2)duR=2a21[arctanu]0R=2a21.π2=πa21R=π(2)21=π

Leave a Reply

Your email address will not be published. Required fields are marked *