Menu Close

0-pi-e-2x-sin-x-dx-




Question Number 77918 by john santu last updated on 12/Jan/20
∫ _0 ^π  e^(−2x)  sin x dx ?
π0e2xsinxdx?
Commented by mathmax by abdo last updated on 12/Jan/20
∫_0 ^π  e^(−2x) sinx dx =Im(∫_0 ^π  e^(−2x+ix) dx) we have  ∫_0 ^π  e^((−2+i)x) dx =[(1/(−2+i))e^((−2+i)x) ]_0 ^π =(1/(−2+i))(e^((−2+i)π) −1)  =((−1)/(2−i)){ −e^(−2π) −1) =(1/(2−i))(e^(−2π)  +1) =((2+i)/5)(e^(−2π) +1)  =(2/5)(1+e^(−2π) )+(1/5)(e^(−2π)  +1)i ⇒  ∫_0 ^π  e^(−2x) sinxdx =((1+e^(−2π) )/5)
0πe2xsinxdx=Im(0πe2x+ixdx)wehave0πe(2+i)xdx=[12+ie(2+i)x]0π=12+i(e(2+i)π1)=12i{e2π1)=12i(e2π+1)=2+i5(e2π+1)=25(1+e2π)+15(e2π+1)i0πe2xsinxdx=1+e2π5
Answered by john santu last updated on 12/Jan/20

Leave a Reply

Your email address will not be published. Required fields are marked *