Menu Close

0-pi-sin-2n-xdx-




Question Number 139883 by qaz last updated on 02/May/21
∫_0 ^π sin^(2n) xdx=?
0πsin2nxdx=?
Answered by Dwaipayan Shikari last updated on 02/May/21
∫_0 ^π sin^(2n) (x)dx  =2∫_0 ^(π/2) sin^(2n) (x)dx=2.((Γ(((2n+1)/2))Γ((1/2)))/(2Γ(((2n)/2)+1)))=((Γ(n+(1/2))Γ((1/2)))/(n!))  As∫_0 ^(π/2) sin^(a−1) x cos^(b−1) x dx=((Γ(a)Γ(b))/(2Γ(a+b)))
0πsin2n(x)dx=20π2sin2n(x)dx=2.Γ(2n+12)Γ(12)2Γ(2n2+1)=Γ(n+12)Γ(12)n!As0π2sina1xcosb1xdx=Γ(a)Γ(b)2Γ(a+b)
Commented by Ar Brandon last updated on 02/May/21
=((πn(2n−1)!)/(2^(2n−1) (n!)^2 ))
=πn(2n1)!22n1(n!)2

Leave a Reply

Your email address will not be published. Required fields are marked *