Menu Close

0-pi-sin-2n-xdx-




Question Number 139883 by qaz last updated on 02/May/21
∫_0 ^π sin^(2n) xdx=?
$$\int_{\mathrm{0}} ^{\pi} \mathrm{sin}\:^{\mathrm{2}{n}} {xdx}=? \\ $$
Answered by Dwaipayan Shikari last updated on 02/May/21
∫_0 ^π sin^(2n) (x)dx  =2∫_0 ^(π/2) sin^(2n) (x)dx=2.((Γ(((2n+1)/2))Γ((1/2)))/(2Γ(((2n)/2)+1)))=((Γ(n+(1/2))Γ((1/2)))/(n!))  As∫_0 ^(π/2) sin^(a−1) x cos^(b−1) x dx=((Γ(a)Γ(b))/(2Γ(a+b)))
$$\int_{\mathrm{0}} ^{\pi} {sin}^{\mathrm{2}{n}} \left({x}\right){dx} \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{2}{n}} \left({x}\right){dx}=\mathrm{2}.\frac{\Gamma\left(\frac{\mathrm{2}{n}+\mathrm{1}}{\mathrm{2}}\right)\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)}{\mathrm{2}\Gamma\left(\frac{\mathrm{2}{n}}{\mathrm{2}}+\mathrm{1}\right)}=\frac{\Gamma\left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right)\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)}{{n}!} \\ $$$${As}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{{a}−\mathrm{1}} {x}\:{cos}^{{b}−\mathrm{1}} {x}\:{dx}=\frac{\Gamma\left({a}\right)\Gamma\left({b}\right)}{\mathrm{2}\Gamma\left({a}+{b}\right)} \\ $$
Commented by Ar Brandon last updated on 02/May/21
=((πn(2n−1)!)/(2^(2n−1) (n!)^2 ))
$$=\frac{\pi\mathrm{n}\left(\mathrm{2n}−\mathrm{1}\right)!}{\mathrm{2}^{\mathrm{2n}−\mathrm{1}} \left(\mathrm{n}!\right)^{\mathrm{2}} } \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *