Menu Close

0-sin-1-x-1-pi-sin-pi-x-dx-




Question Number 133563 by bemath last updated on 23/Feb/21
 ∫_0 ^∞  [sin (1/x)−(1/π)sin ((π/x))] dx
0[sin1x1πsin(πx)]dx
Answered by EDWIN88 last updated on 23/Feb/21
 Calculate ∫_0 ^∞ (sin( (1/x))−(1/π) sin ((π/x) ) )dx  let (1/x) = t∧ x= (1/t) ;  determinant (((x→∞),(t→0^+ )),((x→0^+ ),(t→∞)))  I=∫_∞ ^0 (sin t−(1/π)sin πt)(−(1/t^2 ))dt   I=∫_0 ^∞ (((((sin t)/t)− ((sin πt)/(πt)))/t) ) dt ; Frullani integral  I=[ lim_(t→∞)  (((sin t)/t))−lim_(t→0)  ((sin πt)/(πt)) ].ln ((b/a)) ;  { ((b=1)),((a=π)) :}  I=(0−1)ln ((1/π))=ln π
Calculate0(sin(1x)1πsin(πx))dxlet1x=tx=1t;xt0+x0+tI=0(sint1πsinπt)(1t2)dtI=0(sinttsinπtπtt)dt;FrullaniintegralI=[limt(sintt)limt0sinπtπt].ln(ba);{b=1a=πI=(01)ln(1π)=lnπ

Leave a Reply

Your email address will not be published. Required fields are marked *