0-sin-4-x-x-4-dx-pi-3- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 143312 by Ar Brandon last updated on 12/Jun/21 ∫0∞sin4xx4dx=π3 Answered by Olaf_Thorendsen last updated on 12/Jun/21 Letf(x)=1(constantfunctionunity)Asfisacontinuousfunctionsatisfyingtheπ−periodicassumption,wecanapplytheextendedLobachevsky′sDirichletintegralformula:∫0∞sin4x4f(x)dx=∫0π2f(x)dx−23∫0π2sin2x.f(x)dx⇒∫0∞sin4x4dx=∫0π2dx−23∫0π2sin2xdx∫0∞sin4x4dx=π2−23∫0π21−cos2x2dx∫0∞sin4x4dx=π2−13[x−12sin2x]0π2∫0∞sin4x4dx=π2−13(π2)∫0∞sin4x4dx=π2−π6=π3 Commented by Ar Brandon last updated on 12/Jun/21 ThanksSir Commented by Ar Brandon last updated on 12/Jun/21 Itriedthis;Φ=∫0∞sin4xx4dx,sin4x=(1−2cos2x+cos22x)4=14−cos2x2+(1+cos4x)8Φ=38∫0∞1x4dx−12∫0∞cos2xx4dx+18∫0∞cos4xx4dx=−[18x3]0∞−π234Γ(4)cos(π2×4)+π4316Γ(4)cos(π2×4)=−[18x3]0∞−8π24+64π48=…Whydiditnotgo?Doyouknowwhy? Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-77772Next Next post: cosx-2-cosx-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.