Menu Close

0-sin-4-x-x-4-dx-pi-3-




Question Number 143312 by Ar Brandon last updated on 12/Jun/21
∫_0 ^∞ ((sin^4 x)/x^4 )dx=(π/3)
0sin4xx4dx=π3
Answered by Olaf_Thorendsen last updated on 12/Jun/21
Let f(x) = 1 (constant function unity)  As f is a continuous function satisfying  the π−periodic assumption, we can  apply the extended Lobachevsky′s   Dirichlet integral formula :  ∫_0 ^∞ ((sin^4 )/x^4 )f(x) dx = ∫_0 ^(π/2) f(x) dx−(2/3)∫_0 ^(π/2) sin^2 x.f(x)dx  ⇒ ∫_0 ^∞ ((sin^4 )/x^4 ) dx = ∫_0 ^(π/2) dx−(2/3)∫_0 ^(π/2) sin^2 x dx  ∫_0 ^∞ ((sin^4 )/x^4 ) dx = (π/2)−(2/3)∫_0 ^(π/2) ((1−cos2x)/2) dx  ∫_0 ^∞ ((sin^4 )/x^4 ) dx = (π/2)−(1/3)[x−(1/2)sin2x]_0 ^(π/2)   ∫_0 ^∞ ((sin^4 )/x^4 ) dx = (π/2)−(1/3)((π/2))  ∫_0 ^∞ ((sin^4 )/x^4 ) dx = (π/2)−(π/6) = (π/3)
Letf(x)=1(constantfunctionunity)Asfisacontinuousfunctionsatisfyingtheπperiodicassumption,wecanapplytheextendedLobachevskysDirichletintegralformula:0sin4x4f(x)dx=0π2f(x)dx230π2sin2x.f(x)dx0sin4x4dx=0π2dx230π2sin2xdx0sin4x4dx=π2230π21cos2x2dx0sin4x4dx=π213[x12sin2x]0π20sin4x4dx=π213(π2)0sin4x4dx=π2π6=π3
Commented by Ar Brandon last updated on 12/Jun/21
Thanks Sir
ThanksSir
Commented by Ar Brandon last updated on 12/Jun/21
I tried this;  Φ=∫_0 ^∞ ((sin^4 x)/x^4 )dx,   sin^4 x=(((1−2cos2x+cos^2 2x))/4)=(1/4)−((cos2x)/2)+(((1+cos4x))/8)  Φ=(3/8)∫_0 ^∞ (1/x^4 )dx−(1/2)∫_0 ^∞ ((cos2x)/x^4 )dx+(1/8)∫_0 ^∞ ((cos4x)/x^4 )dx      =−[(1/(8x^3 ))]_0 ^∞ −((π2^3 )/(4Γ(4)cos((π/2)×4)))+((π4^3 )/(16Γ(4)cos((π/2)×4)))       =−[(1/(8x^3 ))]_0 ^∞ −((8π)/(24))+((64π)/(48))=...  Why did it not go ? Do you know why ?
Itriedthis;Φ=0sin4xx4dx,sin4x=(12cos2x+cos22x)4=14cos2x2+(1+cos4x)8Φ=3801x4dx120cos2xx4dx+180cos4xx4dx=[18x3]0π234Γ(4)cos(π2×4)+π4316Γ(4)cos(π2×4)=[18x3]08π24+64π48=Whydiditnotgo?Doyouknowwhy?

Leave a Reply

Your email address will not be published. Required fields are marked *