Menu Close

0-sinx-x-dx-




Question Number 142338 by rs4089 last updated on 30/May/21
∫_0 ^∞ ((sinx)/x^μ )dx  =?
0sinxxμdx=?
Answered by Dwaipayan Shikari last updated on 30/May/21
(1/x^μ )=(1/(Γ(μ)))∫_0 ^∞ e^(−xt) t^(μ−1) dt  ∫_0 ^∞ ((sin(x))/x^μ )dx=(1/(Γ(μ)))∫_0 ^∞ ∫_0 ^∞ e^(−xt) t^(μ−1) sin(x)dxdt  =(1/(2iΓ(μ)))∫_0 ^∞ (t^(μ−1) /(t−i))−(t^(μ−1) /(t+i))dt  =(1/(2Γ(μ)))∫_0 ^∞ (g^((μ/2)−1) /(1+g))dg=(1/(2Γ(μ)))B((μ/2),1−(μ/2))  =(π/(2Γ(μ)sin(((πμ)/2))))
1xμ=1Γ(μ)0exttμ1dt0sin(x)xμdx=1Γ(μ)00exttμ1sin(x)dxdt=12iΓ(μ)0tμ1titμ1t+idt=12Γ(μ)0gμ211+gdg=12Γ(μ)B(μ2,1μ2)=π2Γ(μ)sin(πμ2)
Commented by rs4089 last updated on 30/May/21
thanks a lot sir
thanksalotsir
Answered by mathmax by abdo last updated on 30/May/21
f(a)=∫_0 ^∞   ((sinx)/x^a )dx ⇒f(a)=−Im(∫_0 ^∞ x^(−a) e^(−ix) dx)   we have  ∫_0 ^∞  x^(−a) .e^(−ix)  dx =_(ix=t)   ∫_0 ^∞  (−it)^(−a)  e^(−t)   (dt/i)  =(−i)^(−a+1 ) ∫_0 ^∞   t^(−a)   e^(−t)  dt  =(e^(−((iπ)/2)) )^(1−a)  .Γ(1−a)  =Γ(1−a).e^((a−1)(π/2)) =Γ(1−a){cos(a−1)(π/2)+isin(a−1)(π/2)}  =Γ(1−a){sin(((πa)/2))−icos(((πa)/2))} ⇒  f(a)=cos(((πa)/2)).Γ(1−a)  we know Γ(a).Γ(1−a)=(π/(sin(πa))) ⇒  Γ(1−a)=(π/(sin(πa).Γ(a))) ⇒f(a)=((πcos(((πa)/2)))/(sin(πa).Γ(a)))  =(π/(Γ(a))).((cos(((πa)/2)))/(sin(πa)))   with 0<a<1
f(a)=0sinxxadxf(a)=Im(0xaeixdx)wehave0xa.eixdx=ix=t0(it)aetdti=(i)a+10taetdt=(eiπ2)1a.Γ(1a)=Γ(1a).e(a1)π2=Γ(1a){cos(a1)π2+isin(a1)π2}=Γ(1a){sin(πa2)icos(πa2)}f(a)=cos(πa2).Γ(1a)weknowΓ(a).Γ(1a)=πsin(πa)Γ(1a)=πsin(πa).Γ(a)f(a)=πcos(πa2)sin(πa).Γ(a)=πΓ(a).cos(πa2)sin(πa)with0<a<1
Commented by mathmax by abdo last updated on 30/May/21
but sin(πa)=2sin(((πa)/2))cos(((πa)/2)) ⇒  ∫_0 ^∞   ((sinx)/x^a )dx =(π/(2 Γ(a)sin(((πa)/2))))
butsin(πa)=2sin(πa2)cos(πa2)0sinxxadx=π2Γ(a)sin(πa2)

Leave a Reply

Your email address will not be published. Required fields are marked *