Menu Close

0-x-e-x-2-dx-evaluate-above-expression-




Question Number 8672 by swapnil last updated on 20/Oct/16
∫_0 ^∞ x.e^(−x^2 )  dx  evaluate above expression.
0x.ex2dxevaluateaboveexpression.
Answered by 123456 last updated on 21/Oct/16
u=−x^2   du=−2xdx⇒xdx=−(du/2)  x=0,u=0  x=ε,u=−ε^2   ∫_0 ^∞ xe^(−x^2 ) dx=lim_(ε→∞) ∫_0 ^ε xe^(−x^2 ) dx  =lim_(ε→∞) −(1/2)∫_0 ^(−ε^2 ) e^u du  =lim_(ε→∞) (1/2)∫_(−ε^2 ) ^0 e^u du  =lim_(ε→∞) ((1−e^(−ε^2 ) )/2)  =(1/2)
u=x2du=2xdxxdx=du2x=0,u=0x=ϵ,u=ϵ20xex2dx=limϵϵ0xex2dx=limϵ12ϵ20eudu=limϵ120ϵ2eudu=limϵ1eϵ22=12
Commented by swapnil last updated on 21/Oct/16
is ε>0 ?
isϵ>0?

Leave a Reply

Your email address will not be published. Required fields are marked *