Menu Close

0-x-xe-x-sin-e-x-e-x-dx-




Question Number 74264 by malikmasood3535@gmail.com last updated on 21/Nov/19
∫_0 ^x xe^x sin e^x e^x dx
$$\int_{\mathrm{0}} ^{{x}} {xe}^{{x}} \mathrm{sin}\:{e}^{{x}} {e}^{{x}} {dx} \\ $$
Commented by MJS last updated on 21/Nov/19
(1) dependent borders error  (2) do you mean xe^x sin (e^x e^x ) =xe^x sin e^(2x) ?    same problems with the cosinus−question
$$\left(\mathrm{1}\right)\:\mathrm{dependent}\:\mathrm{borders}\:\mathrm{error} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{do}\:\mathrm{you}\:\mathrm{mean}\:{x}\mathrm{e}^{{x}} \mathrm{sin}\:\left(\mathrm{e}^{{x}} \mathrm{e}^{{x}} \right)\:={x}\mathrm{e}^{{x}} \mathrm{sin}\:\mathrm{e}^{\mathrm{2}{x}} ? \\ $$$$ \\ $$$$\mathrm{same}\:\mathrm{problems}\:\mathrm{with}\:\mathrm{the}\:\mathrm{cosinus}−\mathrm{question} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *