Menu Close

0-xsinh-pix-e-x-2-1-x-2-dx-




Question Number 139092 by mathdanisur last updated on 22/Apr/21
Ω=∫_0 ^∞ ((xsinh(πx)e^(−x^2 ) )/(1+x^2 ))dx
Ω=0xsinh(πx)ex21+x2dx
Answered by mathmax by abdo last updated on 23/Apr/21
i give this soution but not sure!  Φ=∫_0 ^∞  ((xsh(πx)e^(−x^2 ) )/(x^2  +1))dx ⇒Φ=(1/2)∫_(−∞) ^(+∞)  ((xsh(πx))/(x^2 +1))e^(−x^2 ) dx  w(z)=((zsh(πz)e^(−z^2 ) )/(z^2  +1)) ⇒w(z)=((zsh(πz)e^(−z^2 ) )/((z−i)(z+i)))  ∫_(−∞) ^(+∞)  w(z)dz =2iπRes(w,i)[=2iπ×((ish(πi)e^(−(−1)) )/(2i))=iπsh(πi)e  but  sh(πi)=((e^(i(πi)) −e^(−i(πi)) )/(2i))=((e^(−π) −e^π )/(2i)) ⇒  ∫_(−∞) ^(+∞)  w(z)dz =iπ(((e^(−π) −e^π )/(2i)))e =π(e^(1−π) −e^(1+π) ) ⇒  Φ=(π/2)(e^(1−π) −e^(1+π) )
igivethissoutionbutnotsure!Φ=0xsh(πx)ex2x2+1dxΦ=12+xsh(πx)x2+1ex2dxw(z)=zsh(πz)ez2z2+1w(z)=zsh(πz)ez2(zi)(z+i)+w(z)dz=2iπRes(w,i)[=2iπ×ish(πi)e(1)2i=iπsh(πi)ebutsh(πi)=ei(πi)ei(πi)2i=eπeπ2i+w(z)dz=iπ(eπeπ2i)e=π(e1πe1+π)Φ=π2(e1πe1+π)
Commented by mathdanisur last updated on 23/Apr/21
thaks thanks Sir
thaksthanksSir
Commented by mathdanisur last updated on 23/Apr/21
Sir, sinh(iπ)=0 ?
Sir,sinh(iπ)=0?
Commented by mathmax by abdo last updated on 24/Apr/21
no sir its not like sinx...!
nosiritsnotlikesinx!
Commented by mathdanisur last updated on 24/Apr/21
Sir, omega must be >0.  Your answer is a negative number
Sir,omegamustbe>0.Youranswerisanegativenumber
Commented by mathdanisur last updated on 24/Apr/21
Sir, it′s not like sin, sin(ix)/i=sinh?
Sir,itsnotlikesin,sin(ix)/i=sinh?

Leave a Reply

Your email address will not be published. Required fields are marked *