Menu Close

1-1-1-




Question Number 71 by mike last updated on 25/Jan/15
(√(1+(√(1+(√(1+…))))))=?
$$\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\ldots}}}=? \\ $$
Answered by jayant last updated on 17/Nov/14
1
$$\mathrm{1} \\ $$
Commented by 123456 last updated on 13/Dec/14
+0,618...  aproximadamente  pudim→rosquinha
$$+\mathrm{0},\mathrm{618}… \\ $$$${aproximadamente} \\ $$$${pudim}\rightarrow{rosquinha} \\ $$
Commented by prakash jain last updated on 13/Dec/14
It should be ≈1.618
$$\mathrm{It}\:\mathrm{should}\:\mathrm{be}\:\approx\mathrm{1}.\mathrm{618} \\ $$
Answered by newuser last updated on 17/Nov/14
(√(1+(√(1+(√(1+…))))))=x  ⇒(√(1+x))=x  ⇒1+x=x^2   ⇒x^2 −x−1=0  ⇒x=((1±(√(1+4)))/2)=((1±(√5))/2)  taking positive solution x=((1+(√5))/2)  (√(1+(√(1+(√(1+…))))))=((1+(√5))/2)
$$\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\ldots}}}={x} \\ $$$$\Rightarrow\sqrt{\mathrm{1}+{x}}={x} \\ $$$$\Rightarrow\mathrm{1}+{x}={x}^{\mathrm{2}} \\ $$$$\Rightarrow{x}^{\mathrm{2}} −{x}−\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow{x}=\frac{\mathrm{1}\pm\sqrt{\mathrm{1}+\mathrm{4}}}{\mathrm{2}}=\frac{\mathrm{1}\pm\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$$\mathrm{taking}\:\mathrm{positive}\:\mathrm{solution}\:{x}=\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$$\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\ldots}}}=\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$