Menu Close

1-1-2-2-1-2-1-1-3-2-2-2-1-2-2-2-1-3-5-2-3-1-2-3-3-1-4-2pi-3-1-4-2-




Question Number 136757 by Dwaipayan Shikari last updated on 25/Mar/21
1+((1/2))^2 (1/(2.1!))+(((1.3)/2^2 ))^2 (1/(2^2 .2!))+(((1.3.5)/2^3 )).(1/(2^3 .3!))+....=(((Γ((1/4)))/((2π^3 )^(1/4) )))^2
$$\mathrm{1}+\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \frac{\mathrm{1}}{\mathrm{2}.\mathrm{1}!}+\left(\frac{\mathrm{1}.\mathrm{3}}{\mathrm{2}^{\mathrm{2}} }\right)^{\mathrm{2}} \frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} .\mathrm{2}!}+\left(\frac{\mathrm{1}.\mathrm{3}.\mathrm{5}}{\mathrm{2}^{\mathrm{3}} }\right).\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{3}} .\mathrm{3}!}+….=\left(\frac{\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right)}{\left(\mathrm{2}\pi^{\mathrm{3}} \right)^{\mathrm{1}/\mathrm{4}} }\right)^{\mathrm{2}} \\ $$
Answered by mindispower last updated on 25/Mar/21
1+Σ_(n≥1) ((Π_(k=0) ^(n−1) (2k+1)^2 )/(2^(3n) .n! ))  ...?
$$\mathrm{1}+\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\prod}}\left(\mathrm{2}{k}+\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{2}^{\mathrm{3}{n}} .{n}!\:}\:\:…? \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *