Menu Close

1-1-2-x-sin-1-3-3x-2-2-x-dx-




Question Number 73689 by ajfour last updated on 14/Nov/19
∫_(−1) ^(  1) (2+x)sin^(−1) (((√(3−3x^2 ))/(2+x)))dx = ?
11(2+x)sin1(33x22+x)dx=?
Answered by mind is power last updated on 15/Nov/19
(d/dx){sin^(−1) (((√(3−3x^2 ))/(2+x)))}=f(x)^′ ={((−3x)/((2+x)(√(3−3x^2 )))) −((√(3−3x^2 ))/((2+x)^2 ))}.(1/( (√(1−((3−3x^2 )/((2+x)^2 ))))))  ={((−3x(2+x)−(3−3x^2 ))/((2+x)^2 .(√(3−3x^2 ))))}.((2+x)/( (√((2x+1)^2 ))))={((−6x−3)/(∣2x+1∣))}.(1/((2+x)(√(3−3x^2 ))))  =((−3sign(2x+1))/((2+x)(√(3−3x^2 ))))   if xε[−(1/2),1]  =((−3)/((2+x)(√(3−3x^2 )))),(3/((2+x)(√(3−3x^2 ))))  ifx∈[−1,((−1)/2)]  ∫_(−1) ^1 (2+x)sin^(−1) (((√(3−3x^2 ))/(2+x)))=[(2x+(x^2 /2))sin^(−1) (((√(3−3x^2 ))/(2+x)))]_(−1) ^1 −∫_(−1) ^(−(1/2)) ((4x+x^2 )/2).(3/((2+x)(√(3−3x^2 ))))−∫_(−(1/2)) ^1 ((4x+x^2 )/2).((−3dx)/((2+x)(√(3−3x^2 ))))  all we need is ∫((3(x^2 +4x)dx)/((2+x)(√(3−3x^2 )))),x=sin(θ),θ∈[−(π/2),(π/2)]⇒cos(θ)≥0  ⇒∫((3(sin^2 +4sin(θ))cos(θ)dθ)/({2+sin(θ)}.cos(θ).(√3)))=∫((3(sin(θ)+2)^2 −12)/( (√3)(2+sin(θ)}))dθ  =(√3)∫(sin(θ)+2)−4(√3)∫(dθ/(2+sin(θ)))   ,tg((θ/2))=t in2nd  =−(√3)cos(θ)+2(√3)θ−4(√3)∫(2/(2+((2t)/(1+t^2 )))).(dt/(1+t^2 ))=−(√3)cos(θ)+2(√(3 θ)) −4(√3)∫(dt/(t^2 +t+1))  =−(√3)cos(θ)+2(√3)θ−8arctan((((2tg((θ/2)))/( (√3)))+(1/( (√3)))))  ∫(((x^2 +4x)dx)/((2+x)(√(3−3x^2 ))))=−(√3) (√(1−x^2 ))  +2(√3)arcsin(x)−8arctan(((2tg(((arcsin(x))/2))+1)/( (√3)))).  −{−(√3).((√3)/2)−2(√3)(π/6)−8.(π/(12)).)}+(1/2){−2(√3).(π/2)+8.(π/6)}+(1/2){2(√3).(π/2)−8.(π/3)}  =(3/2)+(π/( (√3)))
ddx{sin1(33x22+x)}=f(x)={3x(2+x)33x233x2(2+x)2}.1133x2(2+x)2={3x(2+x)(33x2)(2+x)2.33x2}.2+x(2x+1)2={6x32x+1}.1(2+x)33x2=3sign(2x+1)(2+x)33x2ifxϵ[12,1]=3(2+x)33x2,3(2+x)33x2ifx[1,12]11(2+x)sin1(33x22+x)=[(2x+x22)sin1(33x22+x)]111124x+x22.3(2+x)33x21214x+x22.3dx(2+x)33x2allweneedis3(x2+4x)dx(2+x)33x2,x=sin(θ),θ[π2,π2]cos(θ)03(sin2+4sin(θ))cos(θ)dθ{2+sin(θ)}.cos(θ).3=3(sin(θ)+2)2123(2+sin(θ)}dθ=3(sin(θ)+2)43dθ2+sin(θ),tg(θ2)=tin2nd=3cos(θ)+23θ4322+2t1+t2.dt1+t2=3cos(θ)+23θ43dtt2+t+1=3cos(θ)+23θ8arctan((2tg(θ2)3+13))(x2+4x)dx(2+x)33x2=31x2+23arcsin(x)8arctan(2tg(arcsin(x)2)+13).{3.3223π68.π12.)}+12{23.π2+8.π6}+12{23.π28.π3}=32+π3
Commented by ajfour last updated on 15/Nov/19
Thanks, Powerful Mind!
Thanks,PowerfulMind!
Commented by mind is power last updated on 15/Nov/19
y ′re welcom
yrewelcom
Answered by MJS last updated on 15/Nov/19
∫(2+x)arcsin ((√(3−3x^2 ))/(2+x)) dx=       [t=arccos ((2x+1)/(x+2)) → dx=−(((x+2)(√(3−3x^2 )))/3)dt]  (1)  for 0≤t≤(π/2)  =−9∫((t sin t)/((2−cos t)^3 ))dt=        [((∫u′v=uv−∫uv′)),((u′=((sin t)/((2−cos t)^3 )) ⇒ u=−(1/(2(2−cos t)^2 )))),((v=t ⇒ v′=1)) ]  =((9t)/(2(2−cos t)^2 ))−(9/2)∫(dt/((2−cos t)^2 ))=         ∫(dt/((2−cos t)^2 ))=            [w=tan (t/2) → dt=((2dw)/(w^2 +1))]       =2∫((w^2 +1)/((3w^2 +1)^2 ))dw=       =((2w)/(3(3w^2 +1)))+((4(√3))/9)arctan (√3)w =       =((sin t)/(3(2−cos t)))+((4(√3))/9)arctan ((√3)tan (t/2))    =((9t)/(2(2−cos t)^2 ))−((3sin t)/(2(2−cos t)))−2(√3)arctan ((√3)tan (t/2))    (2)  for (π/2)≤t≤π  =−9π∫((sin t)/((2−cos t)^3 ))dt+9∫((t sin t)/((2−cos t)^3 ))dt=  =((9π)/(2(2−cos t)^2 ))−(the above)    ⇒    ∫_(−1) ^1 (2+x)arcsin ((√(3−3x^2 ))/(2+x)) dx=  =((√3)/3)π+(3/2)
(2+x)arcsin33x22+xdx=[t=arccos2x+1x+2dx=(x+2)33x23dt](1)for0tπ2=9tsint(2cost)3dt=[uv=uvuvu=sint(2cost)3u=12(2cost)2v=tv=1]=9t2(2cost)292dt(2cost)2=dt(2cost)2=[w=tant2dt=2dww2+1]=2w2+1(3w2+1)2dw==2w3(3w2+1)+439arctan3w==sint3(2cost)+439arctan(3tant2)=9t2(2cost)23sint2(2cost)23arctan(3tant2)(2)forπ2tπ=9πsint(2cost)3dt+9tsint(2cost)3dt==9π2(2cost)2(theabove)11(2+x)arcsin33x22+xdx==33π+32
Commented by ajfour last updated on 15/Nov/19
Superb Sir; thanks (you are  indeed an integral lover)!
SuperbSir;thanks(youareindeedanintegrallover)!
Commented by ajfour last updated on 15/Nov/19
Sir what if  I=∫_(−1) ^1 (2+x)^2 arcsin ((√(3−3x^2 ))/(2+x)) dx  ?
SirwhatifI=11(2+x)2arcsin33x22+xdx?
Commented by MJS last updated on 15/Nov/19
in this case we get  −27∫((t sin t)/((2−cos t)^4 ))dt and (−27∫(((π−t)sin t)/((2−cos t)^4 ))dt)  same path leads to  −27∫((t sin t)/((2−cos t)^4 ))dt=  =((9t)/((2−cos t)^3 ))+((3sin t (5−2cos t))/(2(2−cos t)^2 ))+3(√3)arctan ((√3)tan (t/2))  −27∫(((π−t)sin t)/((2−cos t)^4 ))dt=  =−27π∫((sin t)/((2−cos t)^4 ))dt+27∫((t sin t)/((2−cos t)^4 ))=  =((9π)/((2−cos t)^3 ))−(the above)  ⇒  ∫_(−1) ^1 (2+x)^2 arcsin ((√(3−3x^2 ))/(2+x)) dx=  =((√3)/2)π+((15)/4)
inthiscaseweget27tsint(2cost)4dtand(27(πt)sint(2cost)4dt)samepathleadsto27tsint(2cost)4dt==9t(2cost)3+3sint(52cost)2(2cost)2+33arctan(3tant2)27(πt)sint(2cost)4dt==27πsint(2cost)4dt+27tsint(2cost)4==9π(2cost)3(theabove)11(2+x)2arcsin33x22+xdx==32π+154
Commented by ajfour last updated on 15/Nov/19
Great , Sir. Absolutely correct,  I applied it, thanks.
Great,Sir.Absolutelycorrect,Iappliedit,thanks.
Commented by MJS last updated on 15/Nov/19
you′re welcome
yourewelcome

Leave a Reply

Your email address will not be published. Required fields are marked *