Menu Close

1-1-3-1-2-3-1-4-3-1-5-3-1-7-3-1-8-3-




Question Number 132715 by Dwaipayan Shikari last updated on 16/Feb/21
(1/1^3 )−(1/2^3 )+(1/4^3 )−(1/5^3 )+(1/7^3 )−(1/8^3 )+...
113123+143153+173183+
Answered by Olaf last updated on 16/Feb/21
Let (a_n )_(n∈N)  = {1, 2, 4, 5, 7, 8...}  a_n  = (1/4)[6n+3+(−1)^n ]  S = Σ_(n=0) ^∞ (((−1)^n )/a_n ^3 )  S = Σ_(n=0) ^∞ (((−1)^n 4^3 )/([6n+3+(−1)^n ]^3 ))    S = Σ_(p=0) ^∞ (((−1)^(2p) 4^3 )/([6(2p)+3+(−1)^(2p) ]^3 ))  + Σ_(p=0) ^∞ (((−1)^(2p+1) 4^3 )/([6(2p+1)+3+(−1)^(2p+1) ]^3 ))    S = Σ_(p=0) ^∞ (4^3 /((12p+4)^3 ))−Σ_(p=0) ^∞ (4^3 /((12p+8)^3 ))  S = Σ_(p=0) ^∞ (1/((3p+1)^3 ))−Σ_(p=0) ^∞ (1/((3p+2)^3 ))  S = −((Ψ(2,(1/3)))/(54))+((Ψ(2,(2/3)))/(54))  S = ((4π^3 (√3))/(243))  S ≈ 0,8840238122
Let(an)nN={1,2,4,5,7,8}an=14[6n+3+(1)n]S=n=0(1)nan3S=n=0(1)n43[6n+3+(1)n]3S=p=0(1)2p43[6(2p)+3+(1)2p]3+p=0(1)2p+143[6(2p+1)+3+(1)2p+1]3S=p=043(12p+4)3p=043(12p+8)3S=p=01(3p+1)3p=01(3p+2)3S=Ψ(2,13)54+Ψ(2,23)54S=4π33243S0,8840238122
Commented by Dwaipayan Shikari last updated on 16/Feb/21
Great sir!
Greatsir!
Commented by Dwaipayan Shikari last updated on 16/Feb/21
(π/2)tan((π/2)x)=(1/(1−x))−(1/(1+x))+(1/(3−x))−(1/(3+x))+...  (π^2 /4)sec^2 ((π/2)x)=(1/((1−x)^2 ))+(1/((1+x)^2 ))+(1/((3−x)^2 ))+(1/((3+x)^2 ))+...  (π^3 /8)sec^2 ((π/2)x)tan((π/2)x)=(1/((1−x)^3 ))−(1/((1+x)^3 ))+...  x=(1/3)  (π^3 /8).(4/3).(1/( (√3)))=(3^3 /2^3 )−(3^3 /4^3 )+(3^3 /8^3 )−(3^3 /(10^3 ))+...  =(π^3 /(27.6(√3)))=(1/2^3 )(1−(1/2^3 )+(1/4^3 )−(1/5^3 )+...)  ⇒((4π^3 )/(81(√3)))=1−(1/2^3 )+(1/4^3 )−(1/5^3 )+...
π2tan(π2x)=11x11+x+13x13+x+π24sec2(π2x)=1(1x)2+1(1+x)2+1(3x)2+1(3+x)2+π38sec2(π2x)tan(π2x)=1(1x)31(1+x)3+x=13π38.43.13=33233343+338333103+=π327.63=123(1123+143153+)4π3813=1123+143153+
Commented by mnjuly1970 last updated on 16/Feb/21
please prove this nice identity  mr dwaipayan..  (π/2)tan((π/2)(x))=(1/(1−x))−(1/(1+x)) +(1/(3+x))−(1/(3−x))...  of course i think   it can be deduced by   weiresteress gamma formula..   Γ(x)=(e^(−γx) /x)Π_(k=1) ^∞ (e^(x/k) /(1+(x/k)))  and its corallary   ((sin(πx))/(πx))=Π_(k=1) ^∞ (1−(x^2 /k^2 )) ..
pleaseprovethisniceidentitymrdwaipayan..π2tan(π2(x))=11x11+x+13+x13xofcourseithinkitcanbededucedbyweiresteressgammaformula..Γ(x)=eγxxk=1exk1+xkanditscorallarysin(πx)πx=k=1(1x2k2)..
Commented by Dwaipayan Shikari last updated on 16/Feb/21
cosx=(1−((2x)/π))(1+((2x)/π))(1−((2x)/(3π)))(1+((2x)/(3π)))(1−((2x)/(5π)))(1+((2x)/(5π)))...  log(cosx)=log(1−((2x)/π))+log(1+((2x)/π))+...  Differentiating both sides respect to x  −tanx=(((−2)/π)/(1−((2x)/π)))+((2/π)/(1+((2x)/π)))−((2/(3π))/(1−((2x)/(3π))))+..  tanx=(1/((π/2)−x))−(1/((π/2)+x))+(1/(((3π)/2)−x))−(1/(((3π)/2)+x))+...  (π/2)tan((π/2)x)=(1/(1−x))−(1/(1+x))+(1/(3−x))−(1/(3+x))+(1/(5−x))−(1/(5+x))+...
cosx=(12xπ)(1+2xπ)(12x3π)(1+2x3π)(12x5π)(1+2x5π)log(cosx)=log(12xπ)+log(1+2xπ)+Differentiatingbothsidesrespecttoxtanx=2π12xπ+2π1+2xπ23π12x3π+..tanx=1π2x1π2+x+13π2x13π2+x+π2tan(π2x)=11x11+x+13x13+x+15x15+x+
Commented by mnjuly1970 last updated on 16/Feb/21
grateful mr Dwaipayan  thanks lot...
gratefulmrDwaipayanthankslot
Answered by mnjuly1970 last updated on 16/Feb/21
solution:    S is convergent...      rearrangement...     S=((1/1^3 )+(1/4^3 )+(1/7^3 )+....)+                ((1/2^3 )+(1/5^3 )+(1/8^3 )+...)   =Σ_(n=0) ^∞ (1/((3n+1)^3 )) −Σ_(n=1) ^∞ (1/((3n−1)^3 ))  =(1/(27)){Σ_(n=0 ) ^∞ (1/((n+(1/3))^3 ))−Σ_(n=0) ^∞ (1/((n+(2/3) )^3 ))}  note :: (1)::   𝛙(z)−𝛙(1−z)=−𝛑cot(πz)            (2): :  𝛙′(z)+𝛙′(1−z)=𝛑^2 (1+cot^2 (πz))   (3) ::  𝛙′′(z)−𝛙′′(1−z)=−2𝛑^3 (1+cot^2 (𝛑z))cot(𝛑z)      𝛙′′((1/3))−𝛙′′((2/3))=−2π^3 (1+(1/3))((1/( (√3))))    𝛙′′((1/3))−𝛙′′((2/3))=((−8π^3 )/(3(√3))) ....  S=(1/(27))(((−𝛙′′((1/3)))/2)+((𝛙′′((2/3)))/2))  =(1/(54))(((8π^3 )/(3(√3))))=((4𝛑^3 )/(81(√3)))  ....✓✓ m.n..
solution:SisconvergentrearrangementS=(113+143+173+.)+(123+153+183+)=n=01(3n+1)3n=11(3n1)3=127{n=01(n+13)3n=01(n+23)3}note::(1)::ψ(z)ψ(1z)=πcot(πz)(2)::ψ(z)+ψ(1z)=π2(1+cot2(πz))(3)::ψ(z)ψ(1z)=2π3(1+cot2(πz))cot(πz)ψ(13)ψ(23)=2π3(1+13)(13)ψ(13)ψ(23)=8π333.S=127(ψ(13)2+ψ(23)2)=154(8π333)=4π3813.m.n..
Answered by Ajetunmobi last updated on 16/Feb/21
let the sum =S  seperating the positive term and negative term  and factor out minus we get  S=Σ_(k=0) ^∞ (1/((3k+1)^3 ))−Σ_(k=0) (1/((3k+2)^3 ))=(1/(27)){Σ_(k=0) (1/((k+(1/3))^3 ))−Σ_(k=0) (1/((k+(2/3))^3 ))}  S=(1/(27)){𝛙^((1)) ((1/3))−𝛙^((1)) ((2/3))} Answer  Ajetunmobi Abdulqoyyum
letthesum=SseperatingthepositivetermandnegativetermandfactoroutminuswegetS=k=01(3k+1)3k=01(3k+2)3=127{k=01(k+13)3k=01(k+23)3}S=127{ψ(1)(13)ψ(1)(23)}AnswerAjetunmobiAbdulqoyyum
Answered by Ajetunmobi last updated on 16/Feb/21
it should be tetragamma not trigamma  sorry for the mistakes
itshouldbetetragammanottrigammasorryforthemistakes

Leave a Reply

Your email address will not be published. Required fields are marked *