Menu Close

1-1-3-1-5-1-9-1-15-1-25-1-45-1-75-




Question Number 137376 by benjo_mathlover last updated on 02/Apr/21
1+(1/3)+(1/5)+(1/9)+(1/(15))+(1/(25))+...+(1/(45))+(1/(75))+... =?
$$\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{5}}+\frac{\mathrm{1}}{\mathrm{9}}+\frac{\mathrm{1}}{\mathrm{15}}+\frac{\mathrm{1}}{\mathrm{25}}+…+\frac{\mathrm{1}}{\mathrm{45}}+\frac{\mathrm{1}}{\mathrm{75}}+…\:=? \\ $$
Answered by EDWIN88 last updated on 02/Apr/21
 determinant ((,(1/3^0 ),(1/3^1 ),(1/3^2 ),(1/3^3 ),(...),(1/3^n ),Σ_(n=0) ^∞ ),((1/5^0 ),(1/(5^0 .3^0 )),(1/(5^0 .3^1 )),(1/(5^0 .3^2 )),(1/(5^0 .3^3 )),(...),(1/(5^0 .3^n )),((1/5^0 )Σ_(n=0) ^∞  (1/3^n ))),((1/5^1 ),(1/(5^1 .3^0 )),(1/(5^1 .3^1 )),(1/(5^1 .3^2 )),(1/(5^1 .3^3 )),(...),(1/(5^1 .3^n )),((1/5^1 )Σ_(n=0) ^∞  (1/3^n ))),((...),(...),(...),(...),(...),(...),(...),(...)),((1/5^m ),(1/(5^m .3^0 )),(1/(5^m .3^1 )),(1/(5^m .3^2 )),(1/(5^m .3^3 )),(...),(1/(5^m .3^n )),((1/5^m ) Σ_(n=0) ^∞  (1/3^n ))))  so we get : ((1/5^0 )+(1/5^1 )+(1/5^2 )+...+(1/5^m )).Σ_(n=0) ^∞  (1/3^n ) =  (Σ_(m=0) ^∞  (1/5^m )).(Σ_(n=0) ^∞  (1/3^n )) = (1/(1−(1/5))) .(1/(1−(1/3))) = ((15)/8)
$$\begin{array}{|c|c|c|c|c|}{}&\hline{\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{0}} }}&\hline{\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{1}} }}&\hline{\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{2}} }}&\hline{\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{3}} }}&\hline{…}&\hline{\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{n}} }}&\hline{\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}}\\{\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{0}} }}&\hline{\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{0}} .\mathrm{3}^{\mathrm{0}} }}&\hline{\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{0}} .\mathrm{3}^{\mathrm{1}} }}&\hline{\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{0}} .\mathrm{3}^{\mathrm{2}} }}&\hline{\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{0}} .\mathrm{3}^{\mathrm{3}} }}&\hline{…}&\hline{\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{0}} .\mathrm{3}^{\mathrm{n}} }}&\hline{\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{0}} }\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{n}} }}\\{\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{1}} }}&\hline{\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{1}} .\mathrm{3}^{\mathrm{0}} }}&\hline{\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{1}} .\mathrm{3}^{\mathrm{1}} }}&\hline{\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{1}} .\mathrm{3}^{\mathrm{2}} }}&\hline{\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{1}} .\mathrm{3}^{\mathrm{3}} }}&\hline{…}&\hline{\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{1}} .\mathrm{3}^{\mathrm{n}} }}&\hline{\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{1}} }\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{n}} }}\\{…}&\hline{…}&\hline{…}&\hline{…}&\hline{…}&\hline{…}&\hline{…}&\hline{…}\\{\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{m}} }}&\hline{\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{m}} .\mathrm{3}^{\mathrm{0}} }}&\hline{\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{m}} .\mathrm{3}^{\mathrm{1}} }}&\hline{\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{m}} .\mathrm{3}^{\mathrm{2}} }}&\hline{\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{m}} .\mathrm{3}^{\mathrm{3}} }}&\hline{…}&\hline{\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{m}} .\mathrm{3}^{\mathrm{n}} }}&\hline{\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{m}} }\:\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{n}} }}\\\hline\end{array} \\ $$$$\mathrm{so}\:\mathrm{we}\:\mathrm{get}\::\:\left(\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{0}} }+\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{1}} }+\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{2}} }+…+\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{m}} }\right).\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{n}} }\:= \\ $$$$\left(\underset{\mathrm{m}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{m}} }\right).\left(\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{n}} }\right)\:=\:\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{5}}}\:.\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}}}\:=\:\frac{\mathrm{15}}{\mathrm{8}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *