Menu Close

1-2-1-2-2-1-2-2-2-




Question Number 2326 by Filup last updated on 16/Nov/15
(1/( (√2)))×(1/( (√(2+(√2)))))×(1/( (√(2+(√(2+(√2)))))))×...=?
$$\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}×\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}}×\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}}}×…=? \\ $$
Commented by Rasheed Soomro last updated on 16/Nov/15
Nice Approach!
$$\mathcal{N}{ice}\:\mathcal{A}{pproach}! \\ $$
Commented by Yozzi last updated on 16/Nov/15
a_1 =(1/( (√2))),a_2 =(1/( (√(2+a_1 ^(−1) ))))=(1/( (√(2+(√2)))))  a_3 =(1/( (√(2+a_2 ^(−1) ))))=(1/( (√(2+(√(2+(√2)))))))  ∴ Recurrence relation for terms   in product, n≥1,  a_(n+1) =(1/( (√(2+(1/a_n )))))=(√(a_n /(2a_n +1))),a_1 =(1/( (√2)))  a_(n+1) ^2 =(a_n /(2a_n +1))⇒2a_n a_(n+1) ^2 +a_(n+1) ^2 =a_n   If convergence is assumed,l=a_n =a_(n+1)   2l^3 +l^2 −l=0  l(2l^2 +l−1)=0  ⇒l=0 ∨ 2l^2 +l−1=0  ⇒l=((−1±(√(1^2 −4×2×(−1))))/4)=((−1±3)/4)  l=0.5 ∨ l=−1 ∨ l=0.  Since a_n >0 ∀n≥1,⇒l=0.5  Then, the product summarised as  Π_(i=1) ^∞ a_i →0 since the terms in the   product approximate to 0.5<1 for a very large   number of terms⇒(0.5)^∞ =0. This result is based  on the assumption that a limit exists  for {a_n }.
$${a}_{\mathrm{1}} =\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}},{a}_{\mathrm{2}} =\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}+{a}_{\mathrm{1}} ^{−\mathrm{1}} }}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}} \\ $$$${a}_{\mathrm{3}} =\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}+{a}_{\mathrm{2}} ^{−\mathrm{1}} }}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}}} \\ $$$$\therefore\:{Recurrence}\:{relation}\:{for}\:{terms}\: \\ $$$${in}\:{product},\:{n}\geqslant\mathrm{1}, \\ $$$${a}_{{n}+\mathrm{1}} =\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}+\frac{\mathrm{1}}{{a}_{{n}} }}}=\sqrt{\frac{{a}_{{n}} }{\mathrm{2}{a}_{{n}} +\mathrm{1}}},{a}_{\mathrm{1}} =\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}} \\ $$$${a}_{{n}+\mathrm{1}} ^{\mathrm{2}} =\frac{{a}_{{n}} }{\mathrm{2}{a}_{{n}} +\mathrm{1}}\Rightarrow\mathrm{2}{a}_{{n}} {a}_{{n}+\mathrm{1}} ^{\mathrm{2}} +{a}_{{n}+\mathrm{1}} ^{\mathrm{2}} ={a}_{{n}} \\ $$$${If}\:{convergence}\:{is}\:{assumed},{l}={a}_{{n}} ={a}_{{n}+\mathrm{1}} \\ $$$$\mathrm{2}{l}^{\mathrm{3}} +{l}^{\mathrm{2}} −{l}=\mathrm{0} \\ $$$${l}\left(\mathrm{2}{l}^{\mathrm{2}} +{l}−\mathrm{1}\right)=\mathrm{0} \\ $$$$\Rightarrow{l}=\mathrm{0}\:\vee\:\mathrm{2}{l}^{\mathrm{2}} +{l}−\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow{l}=\frac{−\mathrm{1}\pm\sqrt{\mathrm{1}^{\mathrm{2}} −\mathrm{4}×\mathrm{2}×\left(−\mathrm{1}\right)}}{\mathrm{4}}=\frac{−\mathrm{1}\pm\mathrm{3}}{\mathrm{4}} \\ $$$${l}=\mathrm{0}.\mathrm{5}\:\vee\:{l}=−\mathrm{1}\:\vee\:{l}=\mathrm{0}. \\ $$$${Since}\:{a}_{{n}} >\mathrm{0}\:\forall{n}\geqslant\mathrm{1},\Rightarrow{l}=\mathrm{0}.\mathrm{5} \\ $$$${Then},\:{the}\:{product}\:{summarised}\:{as} \\ $$$$\underset{{i}=\mathrm{1}} {\overset{\infty} {\prod}}{a}_{{i}} \rightarrow\mathrm{0}\:{since}\:{the}\:{terms}\:{in}\:{the}\: \\ $$$${product}\:{approximate}\:{to}\:\mathrm{0}.\mathrm{5}<\mathrm{1}\:{for}\:{a}\:{very}\:{large}\: \\ $$$${number}\:{of}\:{terms}\Rightarrow\left(\mathrm{0}.\mathrm{5}\right)^{\infty} =\mathrm{0}.\:{This}\:{result}\:{is}\:{based} \\ $$$${on}\:{the}\:{assumption}\:{that}\:{a}\:{limit}\:{exists} \\ $$$${for}\:\left\{{a}_{{n}} \right\}. \\ $$
Answered by prakash jain last updated on 16/Nov/15
(1/( (√(2+(√2)))))<(1/( (√2))),      (1/( (√(2+(√(2+(√2)))))))<(1/( (√2)))  (1/( (√2)))×(1/( (√(2+(√2)))))×(1/( (√(2+(√(2+(√2)))))))×....<(1/( (√2)))×(1/( (√2)))×(1/( (√2)))×...=lim_(n→∞) ((1/( (√2))))^n =0  (1/( (√2)))×(1/( (√(2+(√2)))))×...>0  (1/( (√2)))×(1/( (√(2+(√2)))))×(1/( (√(2+(√(2+(√2)))))))×....→0
$$\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}}<\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}},\:\:\:\:\:\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}}}<\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}} \\ $$$$\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}×\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}}×\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}}}×….<\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}×\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}×\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}×…=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right)^{{n}} =\mathrm{0} \\ $$$$\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}×\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}}×…>\mathrm{0} \\ $$$$\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}×\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}}×\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}}}×….\rightarrow\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *