Menu Close

1-2-1-4-3-1-9-4-1-16-5-1-25-6-1-36-7-1-49-8-1-64-exp-2-2-pi-2-12-log-2-




Question Number 142035 by Dwaipayan Shikari last updated on 25/May/21
(1/2^(1/4) ).(3^(1/9) /4^(1/16) ).(5^(1/25) /6^(1/36) ).(7^(1/49) /8^(1/64) )...=exp(−((ζ′(2))/2)−(π^2 /(12))log (2))
121/4.31/941/16.51/2561/36.71/4981/64=exp(ζ(2)2π212log(2))
Answered by mindispower last updated on 25/May/21
=Π_(k≥1) (((1+2k)^(1/((2k+1)^2 )) )/((2k)^(1/((2k)^2 )) ))=Ψ  ln(Ψ)=Σ_(k≥1) ((ln(2k+1))/((2k+1)))−Σ_(k≥1) ((ln(2k))/(4k^2 ))=A−B  ζ(x)=Σ_(n≥1) (1/n^x ),ζ′(x)=−Σ_(n≥1) ((ln(n))/n^x )  B=Σ_(k≥1) ((ln(2))/4).(1/k^2 )+(1/4)Σ_(k≥1) ((ln(k))/k^2 )=((ln(2))/4)ζ(2)−((ζ′(2))/4)  A=Σ_(k≥1) (((ln(k))/k^2 )−((ln(2k))/(4k^2 )))=−ζ′(2)−B  ln(Ψ)=−(1/2)ζ′(2)−((ln(2))/2)ζ(2)=−((ζ′(2))/2)−((π^2 ln(2))/(12))  Ψ=exp(((−ζ′(2))/2)−((π^2 ln(2))/(12)))
=k1(1+2k)1(2k+1)2(2k)1(2k)2=Ψln(Ψ)=k1ln(2k+1)(2k+1)k1ln(2k)4k2=ABζ(x)=n11nx,ζ(x)=n1ln(n)nxB=k1ln(2)4.1k2+14k1ln(k)k2=ln(2)4ζ(2)ζ(2)4A=k1(ln(k)k2ln(2k)4k2)=ζ(2)Bln(Ψ)=12ζ(2)ln(2)2ζ(2)=ζ(2)2π2ln(2)12Ψ=exp(ζ(2)2π2ln(2)12)
Commented by Dwaipayan Shikari last updated on 25/May/21
Thanks sir. Great!
Thankssir.Great!
Commented by mindispower last updated on 26/May/21
pleasur sir
pleasursir

Leave a Reply

Your email address will not be published. Required fields are marked *