Question Number 70074 by cat2315 last updated on 30/Sep/19
$$\int_{\mathrm{1}} ^{\mathrm{2}} \left[\mathrm{3}+\frac{\mathrm{1}}{{t}^{\mathrm{2}} }\right]{dt}= \\ $$
Commented by mathmax by abdo last updated on 30/Sep/19
$${if}\:\left[..\right]{means}\:{the}\:{integr}\:{part}\:\:{we}\:{get} \\ $$$$\int_{\mathrm{1}} ^{\mathrm{2}} \left[\mathrm{3}+\frac{\mathrm{1}}{{t}^{\mathrm{2}} }\right]{dt}\:=\int_{\mathrm{1}} ^{\mathrm{2}} \left(\mathrm{3}+\left[\frac{\mathrm{1}}{{t}^{\mathrm{2}} }\right]\right){dt}\:=\mathrm{3}\:+\int_{\mathrm{1}} ^{\mathrm{2}} \left[\frac{\mathrm{1}}{{t}^{\mathrm{2}} }\right]{dt} \\ $$$${for}\:\mathrm{1}\leqslant{t}\leqslant\mathrm{2}\:\Rightarrow\frac{\mathrm{1}}{\mathrm{2}}\leqslant\frac{\mathrm{1}}{{t}}\leqslant\mathrm{1}\:\Rightarrow\frac{\mathrm{1}}{\mathrm{4}}\:\leqslant\frac{\mathrm{1}}{{t}^{\mathrm{2}} }\:\leqslant\mathrm{1}\:\Rightarrow\left[\frac{\mathrm{1}}{{t}^{\mathrm{2}} }\right]=\mathrm{0}\:\Rightarrow \\ $$$$\int_{\mathrm{1}} ^{\mathrm{2}} \left[\mathrm{3}+\frac{\mathrm{1}}{{t}^{\mathrm{2}} }\right]{dt}\:=\mathrm{3} \\ $$
Answered by Rio Michael last updated on 30/Sep/19
$$\int_{\mathrm{1}} ^{\mathrm{2}} \left[\mathrm{3}+\:{t}^{−\mathrm{2}} \right]{dt}\:=\:\left[\mathrm{3}{t}\:\:−\:{t}^{−\mathrm{1}} \right]_{\mathrm{1}} ^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\:\left[\mathrm{3}{t}\:−\frac{\mathrm{1}}{{t}}\right]_{\mathrm{1}} ^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\left[\left(\mathrm{6}\:−\frac{\mathrm{1}}{\mathrm{2}}\right)\:−\:\mathrm{2}\right]\:=\:\frac{\mathrm{7}}{\mathrm{2}} \\ $$$$\:\:\:\: \\ $$