Menu Close

1-2-3-2-5-2-2n-1-2-n-3-4n-2-1-




Question Number 6353 by sanusihammed last updated on 24/Jun/16
1^2  + 3^2  + 5^2  + ......... + (2n − 1)^2  = (n/3)(4n^(2 ) − 1)
$$\mathrm{1}^{\mathrm{2}} \:+\:\mathrm{3}^{\mathrm{2}} \:+\:\mathrm{5}^{\mathrm{2}} \:+\:………\:+\:\left(\mathrm{2}{n}\:−\:\mathrm{1}\right)^{\mathrm{2}} \:=\:\frac{{n}}{\mathrm{3}}\left(\mathrm{4}{n}^{\mathrm{2}\:} −\:\mathrm{1}\right) \\ $$
Commented by prakash jain last updated on 24/Jun/16
(k/3)(4k^2 −1)+[2(k+1)−1]^2   =(k/3)(4k^2 −1)+(2k+1)^2   =(1/3)[4k^3 −k+12k^2 +12k+3]  =(1/3)[4k^3 +12k^2 +11k+3]  =(1/3)[4k^3 +4k^2 +8k^2 +8k+3k+3]  =((k+1)/3)[4k^2 +8k+3]  =((k+1)/3)[4k^2 +8k+4−1]  =((k+1)/3)[4(k+1)^2 −1]  ■
$$\frac{{k}}{\mathrm{3}}\left(\mathrm{4}{k}^{\mathrm{2}} −\mathrm{1}\right)+\left[\mathrm{2}\left({k}+\mathrm{1}\right)−\mathrm{1}\right]^{\mathrm{2}} \\ $$$$=\frac{{k}}{\mathrm{3}}\left(\mathrm{4}{k}^{\mathrm{2}} −\mathrm{1}\right)+\left(\mathrm{2}{k}+\mathrm{1}\right)^{\mathrm{2}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\left[\mathrm{4}{k}^{\mathrm{3}} −{k}+\mathrm{12}{k}^{\mathrm{2}} +\mathrm{12}{k}+\mathrm{3}\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\left[\mathrm{4}{k}^{\mathrm{3}} +\mathrm{12}{k}^{\mathrm{2}} +\mathrm{11}{k}+\mathrm{3}\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\left[\mathrm{4}{k}^{\mathrm{3}} +\mathrm{4}{k}^{\mathrm{2}} +\mathrm{8}{k}^{\mathrm{2}} +\mathrm{8}{k}+\mathrm{3}{k}+\mathrm{3}\right] \\ $$$$=\frac{{k}+\mathrm{1}}{\mathrm{3}}\left[\mathrm{4}{k}^{\mathrm{2}} +\mathrm{8}{k}+\mathrm{3}\right] \\ $$$$=\frac{{k}+\mathrm{1}}{\mathrm{3}}\left[\mathrm{4}{k}^{\mathrm{2}} +\mathrm{8}{k}+\mathrm{4}−\mathrm{1}\right] \\ $$$$=\frac{{k}+\mathrm{1}}{\mathrm{3}}\left[\mathrm{4}\left({k}+\mathrm{1}\right)^{\mathrm{2}} −\mathrm{1}\right] \\ $$$$\blacksquare \\ $$
Commented by sanusihammed last updated on 25/Jun/16
Thanks
$${Thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *