Question Number 4592 by love math last updated on 09/Feb/16
$$\frac{\mathrm{1}}{\mathrm{2}}+{log}_{\mathrm{9}} {x}−{log}_{\mathrm{3}} \mathrm{5}{x}>{log}_{\frac{\mathrm{1}}{\mathrm{3}}} \left({x}+\mathrm{1}\right) \\ $$
Answered by Rasheed Soomro last updated on 10/Feb/16
$$\frac{\mathrm{1}}{\mathrm{2}}+{log}_{\mathrm{9}} {x}−{log}_{\mathrm{3}} \mathrm{5}{x}>{log}_{\frac{\mathrm{1}}{\mathrm{3}}} \left({x}+\mathrm{1}\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}+\frac{{log}_{\mathrm{3}} \:{x}}{{log}_{\mathrm{3}} \:\mathrm{9}}−\frac{{log}_{\mathrm{3}} \:\mathrm{5}{x}}{{log}_{\mathrm{3}} \:\mathrm{3}}>\frac{{log}_{\mathrm{3}} \:\left({x}+\mathrm{1}\right)}{{log}_{\mathrm{3}} \:\frac{\mathrm{1}}{\mathrm{3}}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}+\frac{{log}_{\mathrm{3}} \:{x}}{\mathrm{2}}−\frac{{log}_{\mathrm{3}} \:\mathrm{5}{x}}{\mathrm{1}}>\frac{{log}_{\mathrm{3}} \:\left({x}+\mathrm{1}\right)}{−\mathrm{1}} \\ $$$$\mathrm{1}+{log}_{\mathrm{3}} {x}−\mathrm{2}{log}_{\mathrm{3}} \mathrm{5}{x}>−\mathrm{2}{log}_{\mathrm{3}} \left({x}+\mathrm{1}\right) \\ $$$$\underset{−} {{log}_{\mathrm{3}} \mathrm{3}+{log}_{\mathrm{3}} {x}}−{log}_{\mathrm{3}} \left(\mathrm{5}{x}\right)^{\mathrm{2}} >{log}_{\mathrm{3}} \left({x}+\mathrm{1}\right)^{−\mathrm{2}} \\ $$$$\underset{−} {{log}_{\mathrm{3}} \mathrm{3}{x}}−{log}_{\mathrm{3}} \mathrm{25}{x}^{\mathrm{2}} >{log}_{\mathrm{3}} \left({x}+\mathrm{1}\right)^{−\mathrm{2}} \\ $$$${log}_{\mathrm{3}} \left(\frac{\mathrm{3}{x}}{\mathrm{25}{x}^{\mathrm{2}} }\right)>{log}_{\mathrm{3}} \left(\frac{\mathrm{1}}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }\right) \\ $$$$\frac{\mathrm{3}}{\mathrm{25}{x}}>\frac{\mathrm{1}}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\frac{\mathrm{3}}{\mathrm{25}{x}}−\frac{\mathrm{1}}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }>\mathrm{0} \\ $$$$\frac{\mathrm{3}\left({x}+\mathrm{1}\right)^{\mathrm{2}} −\mathrm{25}{x}}{\mathrm{25}{x}\left(\mathrm{1}+{x}\right)^{\mathrm{2}} }>\mathrm{0} \\ $$$$\frac{\mathrm{3}{x}^{\mathrm{2}} +\mathrm{6}{x}+\mathrm{3}−\mathrm{25}{x}}{\mathrm{25}{x}\left(\mathrm{1}+{x}\right)^{\mathrm{2}} }>\mathrm{0} \\ $$$$\frac{\mathrm{3}{x}^{\mathrm{2}} −\mathrm{19}{x}+\mathrm{3}}{\mathrm{25}{x}\left(\mathrm{1}+{x}\right)^{\mathrm{2}} }>\mathrm{0} \\ $$$$\frac{{N}}{{D}}>\mathrm{0}\Rightarrow\:{N}\:,{D}\:>\mathrm{0}\:\mid\:{N}\:,{D}<\mathrm{0}\: \\ $$$${When}\:{N},{D}>\mathrm{0} \\ $$$$\mathrm{3}{x}^{\mathrm{2}} −\mathrm{19}{x}+\mathrm{3}>\mathrm{0}\:\wedge\:\mathrm{25}{x}\left(\mathrm{1}+{x}\right)^{\mathrm{2}} >\mathrm{0} \\ $$$$\mathrm{25}{x}\left(\mathrm{1}+{x}\right)^{\mathrm{2}} >\mathrm{0}\Rightarrow{x}>\mathrm{0} \\ $$$$ \\ $$$$ \\ $$$${When}\:{N},{D}<\mathrm{0} \\ $$$$\:\mathrm{3}{x}^{\mathrm{2}} −\mathrm{19}{x}+\mathrm{3}<\mathrm{0}\:\:\wedge\:\mathrm{25}{x}\left(\mathrm{1}+{x}\right)^{\mathrm{2}} <\mathrm{0} \\ $$$$ \\ $$$${Continue} \\ $$