Menu Close

1-8-x-2-4-x-2-dx-2-x-6-2x-2-5x-3-




Question Number 136968 by Eric002 last updated on 28/Mar/21
1)∫(8/(x^2 (√(4−x^2 ))))dx  2)∫((x−6 )/(2x^2 −5x+3))
1)8x24x2dx2)x62x25x+3
Answered by EDWIN88 last updated on 28/Mar/21
(1)∫ (8/(x^3  (√(4x^(−2) −1)))) dx = ∫ ((8x^(−3) )/( (√(4x^(−2) −1)))) dx  set u^2  = 4x^(−2) −1   2u du =−8x^(−3)  dx  E = −2∫ (u/u) du =−2u + c   E=−2 (√(4x^(−2) −1)) + c = −2(√((4−x^2 )/x^2 )) + c  E = −((2(√(4−x^2 )))/x) + c
(1)8x34x21dx=8x34x21dxsetu2=4x212udu=8x3dxE=2uudu=2u+cE=24x21+c=24x2x2+cE=24x2x+c
Answered by EDWIN88 last updated on 28/Mar/21
(2)E=∫ ((x−6)/((2x+1)(x−3))) dx   Partial fraction  ((x−6)/(2x^2 −5x+3)) = (p/(2x+1)) + (q/(x−3))  where  { ((p=[((x−6)/(x−3)) ] _(x=−(1/2)) = ((−13)/(−7))=((13)/7))),((q=[((x−6)/(2x+1)) ]_(x=3) =−(3/7))) :}  E=((13)/7)∫ (dx/(2x+1)) −(3/7)∫ (dx/(x−3))  E=((13)/(14)) ln ∣2x+1∣−(3/7) ln ∣x−3∣ + c
(2)E=x6(2x+1)(x3)dxPartialfractionx62x25x+3=p2x+1+qx3where{p=[x6x3]x=12=137=137q=[x62x+1]x=3=37E=137dx2x+137dxx3E=1314ln2x+137lnx3+c
Answered by mathmax by abdo last updated on 28/Mar/21
1) I=∫ (8/(x^2 (√(4−x^2 ))))dx ⇒I=_(x=2sinθ)   ∫  (8/(4sin^2 θ.2cosθ))(2cosθ)dθ  =4∫ (dθ/(sin^2 θ)) =8 ∫ (dθ/(1−cos(2θ)))=_(2θ=t)    8∫  (dt/(2(1−cost)))=4∫ (dt/(1−cost))  =_(tan((t/2))=y)    4 ∫  ((2dy)/((1+y^2 )(1−((1−y^2 )/(1+y^2 )))))=8∫  (dy/(1+y^2 −1+y^2 )) =4∫ (dy/y^2 )  =−(4/y)+C =−(4/(tan((t/2))))+C =−(4/(tan(θ)))+C=−(4/(tan(arcsin((x/2)))))+C
1)I=8x24x2dxI=x=2sinθ84sin2θ.2cosθ(2cosθ)dθ=4dθsin2θ=8dθ1cos(2θ)=2θ=t8dt2(1cost)=4dt1cost=tan(t2)=y42dy(1+y2)(11y21+y2)=8dy1+y21+y2=4dyy2=4y+C=4tan(t2)+C=4tan(θ)+C=4tan(arcsin(x2))+C

Leave a Reply

Your email address will not be published. Required fields are marked *