Menu Close

1-calculate-dx-1-ix-and-dx-1-ix-2-deduce-the-value-of-dx-1-x-2-3-calculate-dx-1-ix-2-and-dx-1-ix-2-4-deduce-the-value




Question Number 65837 by mathmax by abdo last updated on 04/Aug/19
1) calculate ∫_(−∞) ^∞  (dx/(1+ix))  and ∫_(−∞) ^∞   (dx/(1−ix))  2)deduce the value of ∫_(−∞) ^∞  (dx/(1+x^2 ))  3)calculate ∫_(−∞) ^∞   (dx/(1+ix^2 ))  and ∫_(−∞) ^∞  (dx/(1−ix^2 ))  4)deduce the value of ∫_(−∞) ^∞  (dx/(1+x^4 ))
1)calculatedx1+ixanddx1ix2)deducethevalueofdx1+x23)calculatedx1+ix2anddx1ix24)deducethevalueofdx1+x4
Commented by ~ À ® @ 237 ~ last updated on 05/Aug/19
   let  A=∫_(−∞) ^∞  (dx/(1+ix))=2iπlim_(x−>i)  (((x−i)/(1+ix))) =2π  B=∫_(−∞) ^∞ (dx/(1−ix))=−2iπ lim_(z−>    )  (((z+i)/(1−iz)))=2π  A+B=∫_(−∞) ^∞  ((2dx)/(1+x^2 )) ⇒ C=∫_(−∞) ^∞ (dx/(1+x^2 ))=((A+B)/2)=A=B=2π  D=∫_(−∞) ^∞ (dx/(1+ix^2 )) = 2iπ lim_(z−>e^(i(π/4)) )  ((1/(z+e^(i(π/4)) )))=πe^(i(π/4))   E=∫_(−∞) ^∞  (dx/(1−ix^2 ))= −2iπ lim_(z−> e^(−i(π/4)) )  ((1/(z+e^(−i(π/4)) )))=πe^(−i(π/4))    D+E=∫_(−∞) ^∞ ((2dx)/(1+x^4 )) ⇒ F=∫_(−∞) ^∞ (dx/(1+x^4 )) = ((D+E)/2)=((π(e^(i(π/4)) +e^(−i(π/4)) ))/2)=πcos((π/4))=(π/( (√2)))
letA=dx1+ix=2iπlimx>i(xi1+ix)=2πB=dx1ix=2iπlimz>(z+i1iz)=2πA+B=2dx1+x2C=dx1+x2=A+B2=A=B=2πD=dx1+ix2=2iπlimz>eiπ4(1z+eiπ4)=πeiπ4E=dx1ix2=2iπlimz>eiπ4(1z+eiπ4)=πeiπ4D+E=2dx1+x4F=dx1+x4=D+E2=π(eiπ4+eiπ4)2=πcos(π4)=π2
Commented by mathmax by abdo last updated on 05/Aug/19
3)∫_(−∞) ^(+∞)  (dx/(1+ix^2 )) =(1/i)∫_(−∞) ^(+∞)   (dx/(x^2 +(1/i))) =(1/i)∫_(−∞) ^(+∞)   (dx/(x^2 −i))  =(1/i) ∫_(−∞) ^(+∞)   (dx/(x^2 −((√i))^2 )) =(1/i)∫_(−∞) ^(+∞)  (dx/(x^2 −(e^((iπ)/4) )^2 )) =(1/i)∫_(−∞) ^(+∞)  (dx/((x−e^((iπ)/4) )(x+e^((iπ)/4) )))  =((−i)/(2e^((iπ)/4) ))∫_(−∞) ^(+∞) { (1/(x−e^((iπ)/4) ))−(1/(x+e^((iπ)/4) ))}dx  =−(i/2)e^(−((iπ)/4)) {  ∫_(−∞) ^(+∞)   (dx/(x−e^((iπ)/4) )) −∫_(−∞) ^(+∞)  (dx/(x+e^((iπ)/4) ))}  =−(i/2)e^(−((iπ)/4))   {iπ−(−iπ)} =−(i/2)(2iπ)e^(−((iπ)/4))  =π e^(−((iπ)/4))   ∫_(−∞) ^(+∞)   (dx/(1−ix^2 )) =conj( ∫_(−∞) ^(+∞)   (dx/(1+ix^2 ))) =π e^((iπ)/4)   4)∫_(−∞) ^(+∞)   (dx/(1+x^4 )) =∫_(−∞) ^(+∞)   (dx/((1+ix^2 )(1−ix^2 )))  =(1/2)∫_(−∞) ^(+∞)   {(1/(1−ix^2 ))+(1/(1+ix^2 ))}dx =(1/2){ π e^((iπ)/4)  +π e^(−((iπ)/4)) }  =(π/2)(2cos((π/4)) =π ((√2)/2) =(π/( (√2))) .
3)+dx1+ix2=1i+dxx2+1i=1i+dxx2i=1i+dxx2(i)2=1i+dxx2(eiπ4)2=1i+dx(xeiπ4)(x+eiπ4)=i2eiπ4+{1xeiπ41x+eiπ4}dx=i2eiπ4{+dxxeiπ4+dxx+eiπ4}=i2eiπ4{iπ(iπ)}=i2(2iπ)eiπ4=πeiπ4+dx1ix2=conj(+dx1+ix2)=πeiπ44)+dx1+x4=+dx(1+ix2)(1ix2)=12+{11ix2+11+ix2}dx=12{πeiπ4+πeiπ4}=π2(2cos(π4)=π22=π2.
Commented by ~ À ® @ 237 ~ last updated on 05/Aug/19
Please check if there are some mistake : cause normally C=2[arctanx]_0 ^∞ =π
Pleasecheckiftherearesomemistake:causenormallyC=2[arctanx]0=π
Commented by mathmax by abdo last updated on 05/Aug/19
1) we have proved thst ∫_(−∞) ^(+∞)  (dx/(x−a)) =iπ if im(a)>0 and −iπ if  im(a)<0  so ∫_(−∞) ^(+∞)  (dx/(1+ix)) =∫_(−∞) ^(+∞)  (dx/(i(x+(1/i)))) =(1/i) ∫_(−∞) ^(+∞)   (dx/(x−i)) =(1/i)(iπ)  =π  also ∫_(−∞) ^(+∞)   (dx/(1−ix)) =(1/i)∫_(−∞) ^(+∞)  (dx/((1/i)−x)) =−(1/i) ∫_(−∞) ^(+∞)  (dx/(x−(1/i)))  =−(1/i)∫_(−∞) ^(+∞)  (dx/(x+i)) =−(1/i)(−iπ) =π  2)∫_(−∞) ^(+∞)  (dx/(1+x^2 )) =∫_(−∞) ^(+∞)  (dx/((x−i)(x+i))) =(1/(2i))∫_(−∞) ^(+∞) {(1/(x−i))−(1/(x+i))}dx  =(1/(2i)){ ∫_(−∞) ^(+∞)  (dx/(x−i)) −∫_(−∞) ^(+∞)  (dx/(x+i))} =(1/(2i)){iπ −(−iπ)} =π
1)wehaveprovedthst+dxxa=iπifim(a)>0andiπifim(a)<0so+dx1+ix=+dxi(x+1i)=1i+dxxi=1i(iπ)=πalso+dx1ix=1i+dx1ix=1i+dxx1i=1i+dxx+i=1i(iπ)=π2)+dx1+x2=+dx(xi)(x+i)=12i+{1xi1x+i}dx=12i{+dxxi+dxx+i}=12i{iπ(iπ)}=π