Menu Close

1-calculate-f-x-0-1-t-2-x-2-t-2-dt-with-x-gt-0-2-calculste-g-x-0-1-t-2-x-2-t-2-dt-




Question Number 74637 by mathmax by abdo last updated on 28/Nov/19
1)calculate f(x)=∫_0 ^1 t^2 (√(x^2 +t^2 ))dt  with x>0  2) calculste g(x)=∫_0 ^1 (t^2 /( (√(x^2 +t^2 ))))dt
1)calculatef(x)=01t2x2+t2dtwithx>02)calculsteg(x)=01t2x2+t2dt
Commented by mathmax by abdo last updated on 28/Nov/19
1) we have f(x)=∫_0 ^1 t^2 (√(x^2 +t^2 ))dt  ⇒f(x)=_(t=x sh(u))  ∫_0 ^(argsh((1/x))) x^2 sh^2 u(xch(u))xch(u)du  = x^4 ∫_0 ^(ln((1/x)+(√(1+(1/x^2 )))))    sh^2 (u)ch^2 (u)du  =(x^4 /4) ∫_0 ^(ln(((1+(√(x^2 +1)))/x))) sh^2 (2u) du =(x^4 /8) ∫_0 ^(ln(((1+(√(x^2 +1)))/x))) (ch(4u)−1))du  =(x^4 /(32))[ sh(4u)]_0 ^(ln(((1+(√(x^2 +1)))/x))) −(x^4 /8)ln(((1+(√(x^2 +1)))/x))  =(x^4 /(64))[e^(4u) −e^(−4u) ]_0 ^(ln(((1+(√(x^2 +1)))/x))) −(x^4 /8)ln(((1+(√(x^2 +1)))/x))  =(x^4 /(64)){(((1+(√(x^2 +1)))/x))^4 −(((1+(√(x^2 +1)))/x))^(−4) }−(x^4 /8)ln(((1+(√(x^2 +1)))/x))
1)wehavef(x)=01t2x2+t2dtf(x)=t=xsh(u)0argsh(1x)x2sh2u(xch(u))xch(u)du=x40ln(1x+1+1x2)sh2(u)ch2(u)du=x440ln(1+x2+1x)sh2(2u)du=x480ln(1+x2+1x)(ch(4u)1))du=x432[sh(4u)]0ln(1+x2+1x)x48ln(1+x2+1x)=x464[e4ue4u]0ln(1+x2+1x)x48ln(1+x2+1x)=x464{(1+x2+1x)4(1+x2+1x)4}x48ln(1+x2+1x)
Answered by MJS last updated on 28/Nov/19
both with the same substitution  t=xsinh ln u =((x(u^2 −1))/(2u)) → dt=((x(u^2 +1))/(2u^2 ))du  ∫t^2 (√(x^2 +t^2 ))dt=(x^4 /(16))∫(((u^4 −1)^2 )/u^5 )du=  =x^4 (((u^8 −1)/(64u^4 ))−(1/8)ln u)=f(x)  ∫(t^2 /( (√(x^2 +t^2 ))))dt=(x^2 /4)∫(((u^2 −1)^2 )/u^3 )du=  =x^2 (((u^4 −1)/(8u^2 ))−(1/2)ln u)=g(x)  the borders: 0≤t≤1 ⇒ 1≤u≤((1+(√(x^2 +1)))/x)  f(1)=g(1)=0  f(x)=x^4 (((u^8 −1)/(64u^4 ))−(1/8)ln u) with u=((1+(√(x^2 +1)))/x)  g(x)=x^2 (((u^4 −1)/(8u^2 ))−(1/2)ln u) with u=((1+(√(x^2 +1)))/x)  sorry I′ve got no time to insert these and  transform
bothwiththesamesubstitutiont=xsinhlnu=x(u21)2udt=x(u2+1)2u2dut2x2+t2dt=x416(u41)2u5du==x4(u8164u418lnu)=f(x)t2x2+t2dt=x24(u21)2u3du==x2(u418u212lnu)=g(x)theborders:0t11u1+x2+1xf(1)=g(1)=0f(x)=x4(u8164u418lnu)withu=1+x2+1xg(x)=x2(u418u212lnu)withu=1+x2+1xsorryIvegotnotimetoinserttheseandtransform

Leave a Reply

Your email address will not be published. Required fields are marked *